Εμφάνιση απλής εγγραφής

dc.creatorDimitrakopoulos G.N., Vrahatis A.G., Sgarbas K., Plagianakos V.en
dc.date.accessioned2023-01-31T07:55:59Z
dc.date.available2023-01-31T07:55:59Z
dc.date.issued2018
dc.identifier10.1145/3200947.3201029
dc.identifier.isbn9781450364331
dc.identifier.urihttp://hdl.handle.net/11615/73323
dc.description.abstractGiven the fact that our biological existence is rooted in a complex system within our cells with thousands of interactions among genes and metabolites, research community in biological and medical fields have shifted their interest to network-based approaches. This complexity is imprinted in networks which encode the relationships among system’s components. This evolution has also led to the generation a new research fields, the Network Medicine, a combination of Network Science and Systems Biology applied to human diseases. Meanwhile, cutting-edge approaches towards this direction are the subpathway-based methods, identifying “active subpathways” - in the form of local sub-structures within pathways - related with a case under study. Based on this, we propose a classification scheme based on XGBoost, a recent tree-based classification algorithm, in order to detect the most discriminative pathways related with a disease. Subsequently, we extract subpathways and rank them with regard to their ability to correctly classify samples from different experimental conditions. Our method is demonstrated on an aging gene expression dataset providing evidences that XGBoost outperforms other well-known classification methods in biological data, while results provided by our method include several established as well as recently reported longevity-associated pathways. © 2018 Association for Computing Machinery.en
dc.language.isoenen
dc.sourceACM International Conference Proceeding Seriesen
dc.source.urihttps://www.scopus.com/inward/record.uri?eid=2-s2.0-85052023582&doi=10.1145%2f3200947.3201029&partnerID=40&md5=b90e587b5f061671074f33344e249f98
dc.subjectArtificial intelligenceen
dc.subjectBiologyen
dc.subjectComplex networksen
dc.subjectGene expressionen
dc.subjectTrees (mathematics)en
dc.subjectClassification algorithmen
dc.subjectClassification methodsen
dc.subjectClassification schemeen
dc.subjectExperimental conditionsen
dc.subjectNetwork-based approachen
dc.subjectPathway analysisen
dc.subjectResearch communitiesen
dc.subjectXGBoosten
dc.subjectClassification (of information)en
dc.subjectAssociation for Computing Machineryen
dc.titlePathway analysis using xgboost classification in biomedical dataen
dc.typeconferenceItemen


Αρχεία σε αυτό το τεκμήριο

ΑρχείαΜέγεθοςΤύποςΠροβολή

Δεν υπάρχουν αρχεία που να σχετίζονται με αυτό το τεκμήριο.

Αυτό το τεκμήριο εμφανίζεται στις ακόλουθες συλλογές

Εμφάνιση απλής εγγραφής