Εμφάνιση απλής εγγραφής

dc.creatorDimas G., Gatoula P., Iakovidis D.K.en
dc.date.accessioned2023-01-31T07:55:39Z
dc.date.available2023-01-31T07:55:39Z
dc.date.issued2021
dc.identifier10.1109/ICRA48506.2021.9561211
dc.identifier.isbn9781728190778
dc.identifier.issn10504729
dc.identifier.urihttp://hdl.handle.net/11615/73309
dc.description.abstractSalient object detection (SOD) can directly improve the performance of tasks like obstacle detection, semantic segmentation and object recognition. Such tasks are important for robotic and other autonomous navigation systems. State-of-the-art SOD methodologies, provide improved performance by incorporating depth information, usually acquired using additional specialized sensors, e.g., RGB-D cameras. This introduces an overhead to the overall cost and flexibility of such systems. Nevertheless, the recent advances of machine learning, have provided models, capable of generating depth map approximations, given a single RGB image. In this work, we propose a novel monocular SOD (MonoSOD) methodology, based on a two-branch CNN autoencoder architecture capable of predicting depth maps and estimating saliency through a trainable refinement scheme. Its application on benchmark datasets, indicates that its performance is comparable to that of state-of-the-art SOD methods relying on RGB-D data. Therefore, it could be considered as a lower-cost alternative of such methods for future applications. © 2021 IEEEen
dc.language.isoenen
dc.sourceProceedings - IEEE International Conference on Robotics and Automationen
dc.source.urihttps://www.scopus.com/inward/record.uri?eid=2-s2.0-85125461636&doi=10.1109%2fICRA48506.2021.9561211&partnerID=40&md5=f50908d3cf0069d12b01e6dfa6b15027
dc.subjectBenchmarkingen
dc.subjectLearning systemsen
dc.subjectNavigation systemsen
dc.subjectObject detectionen
dc.subjectObstacle detectorsen
dc.subjectRoboticsen
dc.subjectSemantic Segmentationen
dc.subjectSemanticsen
dc.subjectAutonomous navigation systemsen
dc.subjectDepth informationen
dc.subjectDepthmapen
dc.subjectObjects recognitionen
dc.subjectObstacles detectionen
dc.subjectPerformanceen
dc.subjectSalient object detectionen
dc.subjectSemantic objectsen
dc.subjectSemantic segmentationen
dc.subjectState of the arten
dc.subjectObject recognitionen
dc.subjectInstitute of Electrical and Electronics Engineers Inc.en
dc.titleMonoSOD: Monocular Salient Object Detection based on Predicted Depthen
dc.typeconferenceItemen


Αρχεία σε αυτό το τεκμήριο

ΑρχείαΜέγεθοςΤύποςΠροβολή

Δεν υπάρχουν αρχεία που να σχετίζονται με αυτό το τεκμήριο.

Αυτό το τεκμήριο εμφανίζεται στις ακόλουθες συλλογές

Εμφάνιση απλής εγγραφής