Εμφάνιση απλής εγγραφής

dc.creatorDimas G., Cholopoulou E., Iakovidis D.K.en
dc.date.accessioned2023-01-31T07:55:36Z
dc.date.available2023-01-31T07:55:36Z
dc.date.issued2021
dc.identifier10.1109/IST50367.2021.9651326
dc.identifier.isbn9781728173719
dc.identifier.urihttp://hdl.handle.net/11615/73306
dc.description.abstractthe context of computer-assisted navigation of visually impaired people (VIP), time-efficient and robust obstacle detection methods are of major importance. Most commonly, obstacle detection algorithms exploit depth information, acquired from specialized sensors, to characterize objects as obstacles. These algorithms usually incorporate computationally expensive sub-processes, such as ground detection and removal, saliency estimation etc. In this work, we propose a self-supervised system based on a Convolutional Neural Network (CNN) that learns such an obstacle detection algorithm, and simulates it, with significantly lower computational requirements for safe navigation of VIP. The input of the CNN is an RGB image, and its output is a saliency map, softly approximating the image regions that correspond to possibly high-risk obstacles. The resemblance of the saliency maps simulated by the proposed system and the original algorithm is 71.46%, assessed in terms of the Judd implementation of the area under receiver operating characteristic (AUC-J), with a sufficiently comparable obstacle detection accuracy. © 2021 IEEE.en
dc.language.isoenen
dc.sourceIST 2021 - IEEE International Conference on Imaging Systems and Techniques, Proceedingsen
dc.source.urihttps://www.scopus.com/inward/record.uri?eid=2-s2.0-85124360750&doi=10.1109%2fIST50367.2021.9651326&partnerID=40&md5=1649712c6426d71186d2576367faa7c5
dc.subjectComputer visionen
dc.subjectConvolutionen
dc.subjectConvolutional neural networksen
dc.subjectImage segmentationen
dc.subjectNavigationen
dc.subjectSignal detectionen
dc.subjectSoft computingen
dc.subjectComputer-assisted navigationen
dc.subjectConvolutional neural networken
dc.subjectDetection algorithmen
dc.subjectObstacles detectionen
dc.subjectSafe navigationsen
dc.subjectSaliency mapen
dc.subjectSelf-superviseden
dc.subjectSoft-Computingen
dc.subjectVisually impaireden
dc.subjectVisually impaired peopleen
dc.subjectObstacle detectorsen
dc.subjectInstitute of Electrical and Electronics Engineers Inc.en
dc.titleSelf-Supervised Soft Obstacle Detection for Safe Navigation of Visually Impaired Peopleen
dc.typeconferenceItemen


Αρχεία σε αυτό το τεκμήριο

ΑρχείαΜέγεθοςΤύποςΠροβολή

Δεν υπάρχουν αρχεία που να σχετίζονται με αυτό το τεκμήριο.

Αυτό το τεκμήριο εμφανίζεται στις ακόλουθες συλλογές

Εμφάνιση απλής εγγραφής