Logo
    • English
    • Ελληνικά
    • Deutsch
    • français
    • italiano
    • español
  • Ελληνικά 
    • English
    • Ελληνικά
    • Deutsch
    • français
    • italiano
    • español
  • Σύνδεση
Προβολή τεκμηρίου 
  •   Ιδρυματικό Αποθετήριο Πανεπιστημίου Θεσσαλίας
  • Επιστημονικές Δημοσιεύσεις Μελών ΠΘ (ΕΔΠΘ)
  • Δημοσιεύσεις σε περιοδικά, συνέδρια, κεφάλαια βιβλίων κλπ.
  • Προβολή τεκμηρίου
  •   Ιδρυματικό Αποθετήριο Πανεπιστημίου Θεσσαλίας
  • Επιστημονικές Δημοσιεύσεις Μελών ΠΘ (ΕΔΠΘ)
  • Δημοσιεύσεις σε περιοδικά, συνέδρια, κεφάλαια βιβλίων κλπ.
  • Προβολή τεκμηρίου
JavaScript is disabled for your browser. Some features of this site may not work without it.
Ιδρυματικό Αποθετήριο Πανεπιστημίου Θεσσαλίας
Όλο το DSpace
  • Κοινότητες & Συλλογές
  • Ανά ημερομηνία δημοσίευσης
  • Συγγραφείς
  • Τίτλοι
  • Λέξεις κλειδιά

Endoscopic single-image size measurements

Thumbnail
Συγγραφέας
Dimas G., Bianchi F., Iakovidis D.K., Karargyris A., Ciuti G., Koulaouzidis A.
Ημερομηνία
2020
Γλώσσα
en
DOI
10.1088/1361-6501/ab803c
Λέξη-κλειδί
3D modeling
3D printers
Biopsy
Cameras
Convolutional neural networks
Image segmentation
Risk perception
Capsule endoscopy
Gastrointestinal endoscopies
Image-based methods
Inherent limitations
Intrinsic parameters
Mean absolute error
Point correspondence
Rough approximations
Endoscopy
Institute of Physics Publishing
Εμφάνιση Μεταδεδομένων
Επιτομή
In the practice of clinical gastrointestinal endoscopy, precise estimation of the size of a lesion/finding, such as a polyp, is quintessential in diagnosis, e.g. risk estimation for malignancy. However, various studies confirmed that endoscopic assessment of lesion size has inherent limitations and significant measurement errors. Image-based methods proposed for in-vivo-size measurements, rely on reference objects such as the endoscopic biopsy forceps. The aforementioned problem becomes more challenging in the field of capsule endoscopy, as capsules lack navigation and/or biopsy capabilities. To cope with this problem, we propose a methodology that requires only an endoscopic image - without any need for a reference object - in order to estimate the size of an object of interest in it. The first step in this methodology requires the user to define a linear segment within the image. Then, it takes into consideration the intrinsic parameters of the camera, to project known 3D points on the 2D image plane. With known 3D to 2D point correspondences, in order to perform a measurement, a rough approximation of the distance between the object of interest and the camera is needed. For this purpose, a convolutional neural network is utilized which generates depth maps from monocular images. The proposed methodology is validated by experimentation performed in a 3D printed model of the human colon. The results show that it is feasible to measure the size of various objects in endoscopic images with a mean absolute error of 1.10 mm ± 0.89 mm. © 2020 IOP Publishing Ltd.
URI
http://hdl.handle.net/11615/73305
Collections
  • Δημοσιεύσεις σε περιοδικά, συνέδρια, κεφάλαια βιβλίων κλπ. [19674]
Η δικτυακή πύλη της Ευρωπαϊκής Ένωσης
Ψηφιακή Ελλάδα
ΕΣΠΑ 2007-2013
Με τη συγχρηματοδότηση της Ελλάδας και της Ευρωπαϊκής Ένωσης
htmlmap 

 

Πλοήγηση

Όλο το DSpaceΚοινότητες & ΣυλλογέςΑνά ημερομηνία δημοσίευσηςΣυγγραφείςΤίτλοιΛέξεις κλειδιάΑυτή η συλλογήΑνά ημερομηνία δημοσίευσηςΣυγγραφείςΤίτλοιΛέξεις κλειδιά

Ο λογαριασμός μου

ΣύνδεσηΕγγραφή (MyDSpace)
Πληροφορίες-Επικοινωνία
ΑπόθεσηΣχετικά μεΒοήθειαΕπικοινωνήστε μαζί μας
Επιλογή ΓλώσσαςΌλο το DSpace
EnglishΕλληνικά
Η δικτυακή πύλη της Ευρωπαϊκής Ένωσης
Ψηφιακή Ελλάδα
ΕΣΠΑ 2007-2013
Με τη συγχρηματοδότηση της Ελλάδας και της Ευρωπαϊκής Ένωσης
htmlmap