Εμφάνιση απλής εγγραφής

dc.creatorDikopoulou Z., Papageorgiou E.I., Vanhoof K.en
dc.date.accessioned2023-01-31T07:55:20Z
dc.date.available2023-01-31T07:55:20Z
dc.date.issued2020
dc.identifier10.1109/FUZZ48607.2020.9177607
dc.identifier.isbn9781728169323
dc.identifier.issn10987584
dc.identifier.urihttp://hdl.handle.net/11615/73294
dc.description.abstractLearning FCM models from data without any a priori knowledge and expert intervention remains a considerable problem. This research study utilizes a fully data-based learning method (the glassoFCM) for automatic design of Fuzzy Cognitive Maps (FCM) using large ordinal dataset based on the efficient capabilities of graphical lasso (glasso) models. Therefore, glasso represents its structure as a sparser graph, while maintaining a high likelihood, by producing an adjacent weighted matrix, where relationships are expressed by conditional independences. By minimizing the negative log-likelihood indicates that the model fits better to the data under the assumption that the observed data are the most likely data. The principle questioning is which of the observed concepts is the appropriate to trigger the remaining concepts in the map in order to create the glassoFCMs and obtain reasonable results. The answer derives from the FCM structure analysis based on the strength centrality indices. Moreover, the MAX-threshold algorithm based on the FCM scenario analysis is proposed in order to prune edges and retrieve sparser graphs. This algorithm shrinks the meaningless weights of the FCM, without affecting significantly the outcomes in scenario analysis. The whole approach was implemented in a business intelligence problem of evaluating the attractiveness of Belgian companies. © 2020 IEEE.en
dc.language.isoenen
dc.sourceIEEE International Conference on Fuzzy Systemsen
dc.source.urihttps://www.scopus.com/inward/record.uri?eid=2-s2.0-85090495035&doi=10.1109%2fFUZZ48607.2020.9177607&partnerID=40&md5=3c9e5c9b1c87ff1160acbfc8b6f9c135
dc.subjectCognitive systemsen
dc.subjectFuzzy rulesen
dc.subjectGlassen
dc.subjectGraph algorithmsen
dc.subjectLarge dataseten
dc.subjectAutomatic designen
dc.subjectConditional independencesen
dc.subjectFuzzy cognitive mapen
dc.subjectGraphical lassosen
dc.subjectResearch studiesen
dc.subjectScenario analysisen
dc.subjectStructure analysisen
dc.subjectThreshold algorithmsen
dc.subjectLearning systemsen
dc.subjectInstitute of Electrical and Electronics Engineers Inc.en
dc.titleRetrieving sparser fuzzy cognitive maps directly from categorical ordinal dataset using the graphical lasso models and the MAX-threshold algorithmen
dc.typeconferenceItemen


Αρχεία σε αυτό το τεκμήριο

ΑρχείαΜέγεθοςΤύποςΠροβολή

Δεν υπάρχουν αρχεία που να σχετίζονται με αυτό το τεκμήριο.

Αυτό το τεκμήριο εμφανίζεται στις ακόλουθες συλλογές

Εμφάνιση απλής εγγραφής