Εμφάνιση απλής εγγραφής

dc.creatorDemertzis K., Iliadis L., Kikiras P., Pimenidis E.en
dc.date.accessioned2023-01-31T07:53:21Z
dc.date.available2023-01-31T07:53:21Z
dc.date.issued2022
dc.identifier10.3233/ICA-220683
dc.identifier.issn10692509
dc.identifier.urihttp://hdl.handle.net/11615/73201
dc.description.abstractTraining a model using batch learning requires uniform data storage in a repository. This approach is intrusive, as users have to expose their privacy and exchange sensitive data by sending them to central entities to be preprocessed. Unlike the aforementioned centralized approach, training of intelligent models via the federated learning (FEDL) mechanism can be carried out using decentralized data. This process ensures that privacy and protection of sensitive information can be managed by a user or an organization, employing a single universal model for all users. This model should apply average aggregation methods to the set of cooperative training data. This raises serious concerns for the effectiveness of this universal approach and, therefore, for the validity of FEDL architectures in general. Generally, it flattens the unique needs of individual users without considering the local events to be managed. This paper proposes an innovative hybrid explainable semi-personalized federated learning model, that utilizes Shapley Values and Lipschitz Constant techniques, in order to create personalized intelligent models. It is based on the needs and events that each individual user is required to address in a federated format. Explanations are the assortment of characteristics of the interpretable system, which, in the case of a specified illustration, helped to bring about a conclusion and provided the function of the model on both local and global levels. Retraining is suggested only for those features for which the degree of change is considered quite important for the evolution of its functionality. © 2022 - IOS Press. All rights reserved.en
dc.language.isoenen
dc.sourceIntegrated Computer-Aided Engineeringen
dc.source.urihttps://www.scopus.com/inward/record.uri?eid=2-s2.0-85138826743&doi=10.3233%2fICA-220683&partnerID=40&md5=6b11518c5f622069962029637b9d14d1
dc.subjectDigital storageen
dc.subjectLearning systemsen
dc.subjectPrivacy-preserving techniquesen
dc.subjectDecentralized learningen
dc.subjectExplainable AIen
dc.subjectFederated learningen
dc.subjectIntelligent modelsen
dc.subjectInterpretabilityen
dc.subjectLearning modelsen
dc.subjectLipschitz constanten
dc.subjectLocal and global interpretabilityen
dc.subjectPrivacy-preserving architecturesen
dc.subjectShapley valueen
dc.subjectSensitive dataen
dc.subjectIOS Press BVen
dc.titleAn explainable semi-personalized federated learning modelen
dc.typejournalArticleen


Αρχεία σε αυτό το τεκμήριο

ΑρχείαΜέγεθοςΤύποςΠροβολή

Δεν υπάρχουν αρχεία που να σχετίζονται με αυτό το τεκμήριο.

Αυτό το τεκμήριο εμφανίζεται στις ακόλουθες συλλογές

Εμφάνιση απλής εγγραφής