Logo
    • English
    • Ελληνικά
    • Deutsch
    • français
    • italiano
    • español
  • Ελληνικά 
    • English
    • Ελληνικά
    • Deutsch
    • français
    • italiano
    • español
  • Σύνδεση
Προβολή τεκμηρίου 
  •   Ιδρυματικό Αποθετήριο Πανεπιστημίου Θεσσαλίας
  • Επιστημονικές Δημοσιεύσεις Μελών ΠΘ (ΕΔΠΘ)
  • Δημοσιεύσεις σε περιοδικά, συνέδρια, κεφάλαια βιβλίων κλπ.
  • Προβολή τεκμηρίου
  •   Ιδρυματικό Αποθετήριο Πανεπιστημίου Θεσσαλίας
  • Επιστημονικές Δημοσιεύσεις Μελών ΠΘ (ΕΔΠΘ)
  • Δημοσιεύσεις σε περιοδικά, συνέδρια, κεφάλαια βιβλίων κλπ.
  • Προβολή τεκμηρίου
JavaScript is disabled for your browser. Some features of this site may not work without it.
Ιδρυματικό Αποθετήριο Πανεπιστημίου Θεσσαλίας
Όλο το DSpace
  • Κοινότητες & Συλλογές
  • Ανά ημερομηνία δημοσίευσης
  • Συγγραφείς
  • Τίτλοι
  • Λέξεις κλειδιά

Recent Dimensionality Reduction Techniques for High-Dimensional COVID-19 Data

Thumbnail
Συγγραφέας
Dallas I.L., Vrahatis A.G., Tasoulis S.K., Plagianakos V.P.
Ημερομηνία
2022
Γλώσσα
en
DOI
10.1007/978-3-031-20837-9_18
Λέξη-κλειδί
Data reduction
DNA sequences
Embeddings
Gene encoding
Machine learning
Molecular biology
RNA
Stochastic systems
Dimensionality reduction
Dimensionality reduction techniques
High dimensionality
High-dimensional
High-dimensional COVID-19 data
Higher-dimensional
Machine-learning
Single cells
Single-cell RNA-sequencing
Ultra-high
COVID-19
Springer Science and Business Media Deutschland GmbH
Εμφάνιση Μεταδεδομένων
Επιτομή
We are going through the last years of the COVID-19 pandemic, where almost the entire research community has focused on the challenges that constantly arise. From the computational and mathematical perspective, we have to deal with a dataset with ultra-high volume and ultra-high dimensionality in several experimental studies. An indicative example is DNA sequencing technologies, which offer a more realistic picture of human diseases at the molecular biology level. However, these technologies produce data with high complexity and ultra-high dimensionality. On the other hand, dimensionality reduction techniques are the first choice to address this complexity, revealing the hidden data structure in the original multidimensional space. Also, such techniques can improve the efficiency of machine learning tasks such as classification and clustering. Towards this direction, we study the behavior of seven well-known and cutting-edge dimensionality reduction techniques tailored for RNA-sequencing data. Along with the study of the effect of these algorithms, we propose the extension of the Random projection and Geodesic distance t-Stochastic Neighbor Embedding (RGt-SNE) algorithm, a recent t-Stochastic Neighbor Embedding (t-SNE) improvement. We suggest a new distance criterion for the kernel matrix construction. Our results show the potential of the proposed algorithm and, at the same time, highlight the complexity of the COVID-19 data, which are not separable, creating a significant challenge that the Machine Learning field will have to face. © 2022, The Author(s), under exclusive license to Springer Nature Switzerland AG.
URI
http://hdl.handle.net/11615/73044
Collections
  • Δημοσιεύσεις σε περιοδικά, συνέδρια, κεφάλαια βιβλίων κλπ. [19674]

Related items

Showing items related by title, author, creator and subject.

  • Thumbnail

    Towards the mathematic formalization of parametric generalized cylinders and initial results in modeling 3D image data 

    Kechriniotis, A. I.; Delibasis, K. K.; Tsonos, C.; Assimakis, N.; Asvestas, P. (2009)
    Generalized cylinders (GCs) have been proposed in computer vision for object modeling in two dimensional images. However approaches so far have not investigated closed form solutions, based on a formal generic definition ...
  • Thumbnail

    Comparison of 3D ultrasound, 2D ultrasound and 3D Doppler in the diagnosis of endometrial carcinoma in patients with uterine bleeding: A systematic review and meta-analysis 

    Xydias E.M., Kalantzi S., Tsakos E., Ntanika A., Beis N., Prior M., Daponte A., Ziogas A.C. (2022)
    Endometrial cancer is a common malignancy affecting women worldwide. Usually, it clinically manifests with uterine bleeding, although identical clinical manifestations occur in benign conditions as well, with several ...
  • Thumbnail

    Modelling hooked steel fibre pull-out in fibre-reinforced high-strength concrete 

    Mistakidis, E.; Georgiadi-Stefanidi, K.; Pantousa, D. (2006)
    The paper deals with the numerical modelling of hooked steel fibres which are embedded in a high strength cementitious matrix. The pull-out of the fibres is first studied by means of an accurate three-dimensional model. ...
Η δικτυακή πύλη της Ευρωπαϊκής Ένωσης
Ψηφιακή Ελλάδα
ΕΣΠΑ 2007-2013
Με τη συγχρηματοδότηση της Ελλάδας και της Ευρωπαϊκής Ένωσης
htmlmap 

 

Πλοήγηση

Όλο το DSpaceΚοινότητες & ΣυλλογέςΑνά ημερομηνία δημοσίευσηςΣυγγραφείςΤίτλοιΛέξεις κλειδιάΑυτή η συλλογήΑνά ημερομηνία δημοσίευσηςΣυγγραφείςΤίτλοιΛέξεις κλειδιά

Ο λογαριασμός μου

ΣύνδεσηΕγγραφή (MyDSpace)
Πληροφορίες-Επικοινωνία
ΑπόθεσηΣχετικά μεΒοήθειαΕπικοινωνήστε μαζί μας
Επιλογή ΓλώσσαςΌλο το DSpace
EnglishΕλληνικά
Η δικτυακή πύλη της Ευρωπαϊκής Ένωσης
Ψηφιακή Ελλάδα
ΕΣΠΑ 2007-2013
Με τη συγχρηματοδότηση της Ελλάδας και της Ευρωπαϊκής Ένωσης
htmlmap