| dc.creator | Cohen S.D., Kapetanakis G., Reis L. | en |
| dc.date.accessioned | 2023-01-31T07:47:44Z | |
| dc.date.available | 2023-01-31T07:47:44Z | |
| dc.date.issued | 2022 | |
| dc.identifier | 10.5802/crmath.328 | |
| dc.identifier.issn | 1631073X | |
| dc.identifier.uri | http://hdl.handle.net/11615/72936 | |
| dc.description.abstract | Let CQ be the cyclic group of orderQ, n a divisor ofQ and r a divisor ofQ/n.We introduce the set of (r,n)-free elements of CQ and derive a lower bound for the number of elements 2 Fq for which f ( ) is (r,n)- free and F( ) is (R,N)-free, where f ,F 2 Fq [x]. As an application, we consider the existence of Fq -primitive points on curves like yn f (x) and find, in particular, all the odd prime powers q for which the elliptic curves y2 x3 x contain an Fq -primitive point. © 2022 Elsevier Masson SAS. All rights reserved. | en |
| dc.language.iso | en | en |
| dc.source | Comptes Rendus Mathematique | en |
| dc.source.uri | https://www.scopus.com/inward/record.uri?eid=2-s2.0-85134303098&doi=10.5802%2fcrmath.328&partnerID=40&md5=fe84603f86f8eab60d7c6a4d3d80de99 | |
| dc.subject | Academie des sciences | en |
| dc.title | The existence of Fq-primitive points on curves using freeness | en |
| dc.type | journalArticle | en |