Εμφάνιση απλής εγγραφής

dc.creatorChytas S.P., Maglaras L., Derhab A., Stamoulis G.en
dc.date.accessioned2023-01-31T07:47:24Z
dc.date.available2023-01-31T07:47:24Z
dc.date.issued2020
dc.identifier10.1109/SMART-TECH49988.2020.00048
dc.identifier.isbn9781728174075
dc.identifier.urihttp://hdl.handle.net/11615/72915
dc.description.abstractIntrusion Detection Systems (IDS) are the systems that detect and block any potential threats (e.g. DDoS attacks) in the network. In this project, we explore the performance of several machine learning techniques when used as parts of an IDS. We experiment with the CICIDS2017 dataset, one of the biggest and most complete IDS datasets in terms of having a realistic background traffic and incorporating a variety of cyber attacks. The techniques we present are applicable to any IDS dataset and can be used as a basis for deploying a real time IDS in complex environments. © 2020 IEEE.en
dc.language.isoenen
dc.sourceProceedings - 2020 1st International Conference of Smart Systems and Emerging Technologies, SMART-TECH 2020en
dc.source.urihttps://www.scopus.com/inward/record.uri?eid=2-s2.0-85099295427&doi=10.1109%2fSMART-TECH49988.2020.00048&partnerID=40&md5=ce674665b2a4100735d7911aaf2fbe13
dc.subjectDenial-of-service attacken
dc.subjectIntrusion detectionen
dc.subjectMachine learningen
dc.subjectBackground trafficen
dc.subjectComplex environmentsen
dc.subjectCyber-attacksen
dc.subjectDDoS Attacken
dc.subjectIntrusion Detection Systemsen
dc.subjectMachine learning techniquesen
dc.subjectPotential threatsen
dc.subjectReal timeen
dc.subjectNetwork securityen
dc.subjectInstitute of Electrical and Electronics Engineers Inc.en
dc.titleAssessment of Machine Learning Techniques for Building an Efficient IDSen
dc.typeconferenceItemen


Αρχεία σε αυτό το τεκμήριο

ΑρχείαΜέγεθοςΤύποςΠροβολή

Δεν υπάρχουν αρχεία που να σχετίζονται με αυτό το τεκμήριο.

Αυτό το τεκμήριο εμφανίζεται στις ακόλουθες συλλογές

Εμφάνιση απλής εγγραφής