Logo
    • English
    • Ελληνικά
    • Deutsch
    • français
    • italiano
    • español
  • Ελληνικά 
    • English
    • Ελληνικά
    • Deutsch
    • français
    • italiano
    • español
  • Σύνδεση
Προβολή τεκμηρίου 
  •   Ιδρυματικό Αποθετήριο Πανεπιστημίου Θεσσαλίας
  • Επιστημονικές Δημοσιεύσεις Μελών ΠΘ (ΕΔΠΘ)
  • Δημοσιεύσεις σε περιοδικά, συνέδρια, κεφάλαια βιβλίων κλπ.
  • Προβολή τεκμηρίου
  •   Ιδρυματικό Αποθετήριο Πανεπιστημίου Θεσσαλίας
  • Επιστημονικές Δημοσιεύσεις Μελών ΠΘ (ΕΔΠΘ)
  • Δημοσιεύσεις σε περιοδικά, συνέδρια, κεφάλαια βιβλίων κλπ.
  • Προβολή τεκμηρίου
JavaScript is disabled for your browser. Some features of this site may not work without it.
Ιδρυματικό Αποθετήριο Πανεπιστημίου Θεσσαλίας
Όλο το DSpace
  • Κοινότητες & Συλλογές
  • Ανά ημερομηνία δημοσίευσης
  • Συγγραφείς
  • Τίτλοι
  • Λέξεις κλειδιά

Feed Forward Neural Network Sparsification with Dynamic Pruning

Thumbnail
Συγγραφέας
Chouliaras A., Fragkou E., Katsaros D.
Ημερομηνία
2021
Γλώσσα
en
DOI
10.1145/3503823.3503826
Λέξη-κλειδί
Deep learning
Network layers
Topology
Deep learning
Dynamic pruning
Exponential decays
Feed forward neural net works
Hot research topics
Keras
Multilayers perceptrons
Neural network sparsification
Neural-networks
Sparsification
Multilayer neural networks
Association for Computing Machinery
Εμφάνιση Μεταδεδομένων
Επιτομή
A recent hot research topic in deep learning concerns the reduction of the model size of a neural network by pruning, in order to minimize its training and inference cost and thus, being capable of running on devices with memory constraints. In this paper, we employ a pruning technique to sparsify a Multi-Layer Perceptron (MLP) during training, in which the number of topology connections, being pruned and restored, is not stable, but it adopts either one of the following rules: Linear Decreasing Variation (LDV) rule or Oscillating Variation (OSV) rule or Exponential Decay (EXD) rule. We conducted experiments on three MLP Network topologies, implemented with Keras, using the Fashion-MNIST dataset and results showed that the EXD method is a clear winner since, in that case our proposed sparse network has a faster convergence than the dense version of the same one, while it achieves approximately the same high accuracy (around 90%). Furthermore, it is shown that the memory footprint of the aforementioned sparse techniques is at least 95% less instead of the dense version of the network, due to the weights removed. Finally, we present an improved version of the SET implementation in Keras, using Callbacks API, making the SET implementation more efficient. © 2021 ACM.
URI
http://hdl.handle.net/11615/72812
Collections
  • Δημοσιεύσεις σε περιοδικά, συνέδρια, κεφάλαια βιβλίων κλπ. [19674]

Related items

Showing items related by title, author, creator and subject.

  • Thumbnail

    Deep Endoscopic Visual Measurements 

    Iakovidis D.K., DImas G., Karargyris A., Bianchi F., Ciuti G., Koulaouzidis A. (2019)
    Robotic endoscopic systems offer a minimally invasive approach to the examination of internal body structures, and their application is rapidly extending to cover the increasing needs for accurate therapeutic interventions. ...
  • Thumbnail

    Pose recognition using convolutional neural networks on omni-directional images 

    Georgakopoulos S.V., Kottari K., Delibasis K., Plagianakos V.P., Maglogiannis I. (2018)
    Convolutional neural networks (CNNs) are used frequently in several computer vision applications. In this work, we present a methodology for pose classification of binary human silhouettes using CNNs, enhanced with image ...
  • Thumbnail

    Resource-efficient TDNN Architectures for Audio-visual Speech Recognition 

    Koumparoulis A., Potamianos G., Thomas S., da Silva Morais E. (2021)
    In this paper, we consider the problem of resource-efficient architectures for audio-visual automatic speech recognition (AVSR). Specifically, we complement our earlier work that introduced efficient convolutional neural ...
Η δικτυακή πύλη της Ευρωπαϊκής Ένωσης
Ψηφιακή Ελλάδα
ΕΣΠΑ 2007-2013
Με τη συγχρηματοδότηση της Ελλάδας και της Ευρωπαϊκής Ένωσης
htmlmap 

 

Πλοήγηση

Όλο το DSpaceΚοινότητες & ΣυλλογέςΑνά ημερομηνία δημοσίευσηςΣυγγραφείςΤίτλοιΛέξεις κλειδιάΑυτή η συλλογήΑνά ημερομηνία δημοσίευσηςΣυγγραφείςΤίτλοιΛέξεις κλειδιά

Ο λογαριασμός μου

ΣύνδεσηΕγγραφή (MyDSpace)
Πληροφορίες-Επικοινωνία
ΑπόθεσηΣχετικά μεΒοήθειαΕπικοινωνήστε μαζί μας
Επιλογή ΓλώσσαςΌλο το DSpace
EnglishΕλληνικά
Η δικτυακή πύλη της Ευρωπαϊκής Ένωσης
Ψηφιακή Ελλάδα
ΕΣΠΑ 2007-2013
Με τη συγχρηματοδότηση της Ελλάδας και της Ευρωπαϊκής Ένωσης
htmlmap