Εμφάνιση απλής εγγραφής

dc.creatorCharalambous H.P., Roussis P.C., Giannakopoulos A.E.en
dc.date.accessioned2023-01-31T07:43:06Z
dc.date.available2023-01-31T07:43:06Z
dc.date.issued2017
dc.identifier10.1016/j.compbiomed.2017.07.028
dc.identifier.issn00104825
dc.identifier.urihttp://hdl.handle.net/11615/72513
dc.description.abstractBackground Arteries undergo large deformations under applied intraluminal pressure and may exhibit small hysteresis due to creep or relaxation process. The mechanical response of arteries depends, among others, on their topology along the arterial tree. Viscoelasticity of arterial tissues, which is the topic investigated in this study, is mainly a characteristic mechanical response of arteries that are located away from the heart and have increased smooth muscle cells content. Methods The arterial wall viscosity is simulated by adopting a generalized Maxwell model and the method of internal variables, as proposed by Bonet and Holzapfel et al. The total stresses consist of elastic long-term stresses and viscoelastic stresses, requiring an iterative procedure for their calculation. The cross-section of the artery is modeled as a circular ring, consisting of a single homogenized layer, under a time-varying blood pressure. Two different loading approximations for the aortic pressure vs time are considered. A novel numerical method is developed in order to solve the controlling integro-differential equation. Results A large number of numerical investigations are performed and typical response time-profiles are presented in pictorial form. Results suggest that the viscoelastic arterial response is mainly affected by the ratio of the relaxation time to the characteristic time of the response and by the pressure-time approximation. Numerical examples, based on data available in the literature, are conducted. Conclusions The investigation presented in this study reveals the effect of each material parameter on the viscoelastic arterial response. Thus, a better understanding of the behavior of viscoelastic arteries is achieved. © 2017 Elsevier Ltden
dc.language.isoenen
dc.sourceComputers in Biology and Medicineen
dc.source.urihttps://www.scopus.com/inward/record.uri?eid=2-s2.0-85028311025&doi=10.1016%2fj.compbiomed.2017.07.028&partnerID=40&md5=e28ec720a15419b94a646a56639ac302
dc.subjectBlood pressureen
dc.subjectDynamic analysisen
dc.subjectIntegrodifferential equationsen
dc.subjectIterative methodsen
dc.subjectNumerical methodsen
dc.subjectArterial modelen
dc.subjectGeneralized Maxwell modelen
dc.subjectHuman arteryen
dc.subjectIntraluminal pressureen
dc.subjectNovel numerical methodsen
dc.subjectNumerical investigationsen
dc.subjectTotal energyen
dc.subjectViscoelastic arteriesen
dc.subjectViscoelasticityen
dc.subjectaortic pressureen
dc.subjectarterial blooden
dc.subjectarterial smooth muscle cellen
dc.subjectarterial tissueen
dc.subjectArticleen
dc.subjectcalculationen
dc.subjectcomputer simulationen
dc.subjectcontrolled studyen
dc.subjecthumanen
dc.subjecthuman cellen
dc.subjecthuman tissueen
dc.subjectpriority journalen
dc.subjecttimeen
dc.subjectviscoelasticityen
dc.subjectviscosityen
dc.subjectarteryen
dc.subjectbiological modelen
dc.subjectelasticityen
dc.subjectphysiologyen
dc.subjectArteriesen
dc.subjectElasticityen
dc.subjectHumansen
dc.subjectModels, Cardiovascularen
dc.subjectViscosityen
dc.subjectElsevier Ltden
dc.titleViscoelastic dynamic arterial responseen
dc.typejournalArticleen


Αρχεία σε αυτό το τεκμήριο

ΑρχείαΜέγεθοςΤύποςΠροβολή

Δεν υπάρχουν αρχεία που να σχετίζονται με αυτό το τεκμήριο.

Αυτό το τεκμήριο εμφανίζεται στις ακόλουθες συλλογές

Εμφάνιση απλής εγγραφής