Εμφάνιση απλής εγγραφής

dc.creatorChamatidis I., Katsika A., Spathoulas G.en
dc.date.accessioned2023-01-31T07:42:56Z
dc.date.available2023-01-31T07:42:56Z
dc.date.issued2017
dc.identifier10.1109/CCST.2017.8167816
dc.identifier.isbn9781538615850
dc.identifier.issn10716572
dc.identifier.urihttp://hdl.handle.net/11615/72488
dc.description.abstractTraditional password based authentication has been proven inadequate and the use of biometrics have provided multiple solutions through the past years. One of the most recent approaches to biometric authentication is using Electrocardiograms (ECG), as they are closely related to unique characteristics of the heart of each person. In this paper a framework for efficient and usable user authentication, based on ECG, is proposed. The ECG is pre-processed in order to remove any noise or distortions and then multiple set of features are extracted from it, through various transformations. These set of features are used as input to classification models and the results are compared in order to find the most effective transformation-classifier combination, which also sets a performance baseline. Additionally Deep Learning Neural Networks are used in order to create classification models that predicts whether an ECG belongs to a specific person or not, based on the combination of the feature sets produced in the transformation step. The results obtained have shown that deep learning neural networks can provide higher accuracy in comparison to most of other techniques used, if there are enough data to train them on. © 2017 IEEE.en
dc.language.isoenen
dc.sourceProceedings - International Carnahan Conference on Security Technologyen
dc.source.urihttps://www.scopus.com/inward/record.uri?eid=2-s2.0-85042320227&doi=10.1109%2fCCST.2017.8167816&partnerID=40&md5=4283b2bd82216abf24737f6e6ada2032
dc.subjectAuthenticationen
dc.subjectBiometricsen
dc.subjectClassification (of information)en
dc.subjectDeep neural networksen
dc.subjectElectrocardiographyen
dc.subjectFeature extractionen
dc.subjectBiometric authenticationen
dc.subjectClassification modelsen
dc.subjectClassifier combinationen
dc.subjectLearning neural networksen
dc.subjectMultiple seten
dc.subjectMultiple solutionsen
dc.subjectPassword-based authenticationen
dc.subjectUser authenticationen
dc.subjectDeep learningen
dc.subjectInstitute of Electrical and Electronics Engineers Inc.en
dc.titleUsing deep learning neural networks for ECG based authenticationen
dc.typeconferenceItemen


Αρχεία σε αυτό το τεκμήριο

ΑρχείαΜέγεθοςΤύποςΠροβολή

Δεν υπάρχουν αρχεία που να σχετίζονται με αυτό το τεκμήριο.

Αυτό το τεκμήριο εμφανίζεται στις ακόλουθες συλλογές

Εμφάνιση απλής εγγραφής