Εμφάνιση απλής εγγραφής

dc.creatorGarcía-García F., Corral A., Iribarne L., Vassilakopoulos M.en
dc.date.accessioned2023-01-31T07:39:44Z
dc.date.available2023-01-31T07:39:44Z
dc.date.issued2018
dc.identifier10.1007/978-3-030-00856-7_16
dc.identifier.isbn9783030008550
dc.identifier.issn03029743
dc.identifier.urihttp://hdl.handle.net/11615/71962
dc.description.abstractSpatialHadoop is an extended MapReduce framework supporting global indexing techniques that partition spatial data across several machines and improve query processing performance compared to traditional Hadoop systems. SpatialHadoop supports several spatial operations efficiently (e.g. k Nearest Neighbor search, spatial intersection join, etc.). Distance Join Queries (DJQs), e.g. k Nearest Neighbors Join Query, k Closest Pairs Query, etc., are important and common operations used in numerous spatial applications. DJQs are costly operations, since they combine joins with distance-based search. Therefore, performing DJQs efficiently is a challenging task. In this paper, a new partitioning technique based on Voronoi Diagrams is designed and implemented in SpatialHadoop. A new kNNJQ MapReduce algorithm and an improved kCPQ MapReduce algorithm, using the new partitioning mechanism, are also developed for SpatialHadoop. Finally, the results of an extensive set of experiments are presented, demonstrating that the new partitioning technique and the new DJQ MapReduce algorithms are efficient, scalable and robust in SpatialHadoop. © Springer Nature Switzerland AG 2018.en
dc.language.isoenen
dc.sourceLecture Notes in Computer Science (including subseries Lecture Notes in Artificial Intelligence and Lecture Notes in Bioinformatics)en
dc.source.urihttps://www.scopus.com/inward/record.uri?eid=2-s2.0-85055814348&doi=10.1007%2f978-3-030-00856-7_16&partnerID=40&md5=bc00ac750c0d02378cc88b1d12af0c8b
dc.subjectComputational geometryen
dc.subjectGraphic methodsen
dc.subjectIndexing (materials working)en
dc.subjectMembership functionsen
dc.subjectMotion compensationen
dc.subjectNearest neighbor searchen
dc.subjectQuery languagesen
dc.subjectQuery processingen
dc.subjectSearch enginesen
dc.subjectText processingen
dc.subjectData partitioningen
dc.subjectK-closest pairsen
dc.subjectK-nearest neighborsen
dc.subjectMap-reduceen
dc.subjectSpatialHadoopen
dc.subjectData handlingen
dc.subjectSpringer Verlagen
dc.titleVoronoi-diagram based partitioning for distance join query processing in spatialhadoopen
dc.typeconferenceItemen


Αρχεία σε αυτό το τεκμήριο

ΑρχείαΜέγεθοςΤύποςΠροβολή

Δεν υπάρχουν αρχεία που να σχετίζονται με αυτό το τεκμήριο.

Αυτό το τεκμήριο εμφανίζεται στις ακόλουθες συλλογές

Εμφάνιση απλής εγγραφής