Εμφάνιση απλής εγγραφής

dc.creatorFuruya-Kanamori L., Kostoulas P., Doi S.A.R.en
dc.date.accessioned2023-01-31T07:39:14Z
dc.date.available2023-01-31T07:39:14Z
dc.date.issued2021
dc.identifier10.1016/j.jclinepi.2020.12.015
dc.identifier.issn08954356
dc.identifier.urihttp://hdl.handle.net/11615/71859
dc.description.abstractObjectives: This study outlines the development of a new method (split component synthesis; SCS) for meta-analysis of diagnostic accuracy studies and assesses its performance against the commonly used bivariate random effects model. Methods: The SCS method summarizes the study-specific diagnostic odds ratio (on the ln(DOR) scale), which mainly reflects test discrimination rather than threshold effects, and then splits the summary ln(DOR) into its component parts, logit sensitivity (Se) and logit specificity (Sp). Performance of SCS estimator was assessed through simulation and compared against the bivariate random effects model estimator in terms of bias, mean squared error (MSE), and coverage probability across varying degrees of between-studies heterogeneity. Results: The SCS estimator for the DOR, Se, and Sp was less biased and had smaller MSE than the bivariate model estimator. Despite the wider width of the 95% confidence intervals under the bivariate model, the latter had a poorer coverage probability than that under the SCS method. Conclusion: The SCS estimator outperforms the bivariate model estimator and thus represents an improvement in the approach to diagnostic meta-analyses. The SCS method is available to researchers through the diagma module in Stata and the SCSmeta function in R. © 2020 The Authorsen
dc.language.isoenen
dc.sourceJournal of Clinical Epidemiologyen
dc.source.urihttps://www.scopus.com/inward/record.uri?eid=2-s2.0-85098932864&doi=10.1016%2fj.jclinepi.2020.12.015&partnerID=40&md5=50c963d49b64f671be1a560feb723d27
dc.subjectarticleen
dc.subjectdiagnostic accuracyen
dc.subjectdiagnostic test accuracy studyen
dc.subjecthumanen
dc.subjectmeta analysisen
dc.subjectprobabilityen
dc.subjectsensitivity and specificityen
dc.subjectsimulationen
dc.subjectsynthesisen
dc.subjectclinical trial (topic)en
dc.subjectcomputer simulationen
dc.subjectdiagnostic testen
dc.subjectmeasurement accuracyen
dc.subjectmeta analysis (topic)en
dc.subjectmethodologyen
dc.subjectproceduresen
dc.subjectClinical Trials as Topicen
dc.subjectComputer Simulationen
dc.subjectData Accuracyen
dc.subjectDiagnostic Tests, Routineen
dc.subjectHumansen
dc.subjectMeta-Analysis as Topicen
dc.subjectResearch Designen
dc.subjectSensitivity and Specificityen
dc.subjectElsevier Inc.en
dc.titleA new method for synthesizing test accuracy data outperformed the bivariate methoden
dc.typejournalArticleen


Αρχεία σε αυτό το τεκμήριο

ΑρχείαΜέγεθοςΤύποςΠροβολή

Δεν υπάρχουν αρχεία που να σχετίζονται με αυτό το τεκμήριο.

Αυτό το τεκμήριο εμφανίζεται στις ακόλουθες συλλογές

Εμφάνιση απλής εγγραφής