Logo
    • English
    • Ελληνικά
    • Deutsch
    • français
    • italiano
    • español
  • Ελληνικά 
    • English
    • Ελληνικά
    • Deutsch
    • français
    • italiano
    • español
  • Σύνδεση
Προβολή τεκμηρίου 
  •   Ιδρυματικό Αποθετήριο Πανεπιστημίου Θεσσαλίας
  • Επιστημονικές Δημοσιεύσεις Μελών ΠΘ (ΕΔΠΘ)
  • Δημοσιεύσεις σε περιοδικά, συνέδρια, κεφάλαια βιβλίων κλπ.
  • Προβολή τεκμηρίου
  •   Ιδρυματικό Αποθετήριο Πανεπιστημίου Θεσσαλίας
  • Επιστημονικές Δημοσιεύσεις Μελών ΠΘ (ΕΔΠΘ)
  • Δημοσιεύσεις σε περιοδικά, συνέδρια, κεφάλαια βιβλίων κλπ.
  • Προβολή τεκμηρίου
JavaScript is disabled for your browser. Some features of this site may not work without it.
Ιδρυματικό Αποθετήριο Πανεπιστημίου Θεσσαλίας
Όλο το DSpace
  • Κοινότητες & Συλλογές
  • Ανά ημερομηνία δημοσίευσης
  • Συγγραφείς
  • Τίτλοι
  • Λέξεις κλειδιά

Design and implementation of a hybrid model based on two-layer decomposition method coupled with extreme learning machines to support real-time environmental monitoring of water quality parameters

Thumbnail
Συγγραφέας
Fijani E., Barzegar R., Deo R., Tziritis E., Konstantinos S.
Ημερομηνία
2019
Γλώσσα
en
DOI
10.1016/j.scitotenv.2018.08.221
Λέξη-κλειδί
Autocorrelation
Biochemical oxygen demand
Dissolved oxygen
Knowledge acquisition
Lakes
Signal processing
Spurious signal noise
Support vector machines
Sustainable development
Water quality
Adaptive noise
Environmental Monitoring
Extreme machine learning
Mode decomposition
Water quality modelling
Reservoirs (water)
dissolved oxygen
algorithm
decomposition
decomposition analysis
design
ensemble forecasting
environmental monitoring
hybrid
implementation process
machine learning
parameterization
real time
water quality
algorithm
Article
complete ensemble empirical mode decomposition algorithm with adaptive noise
correlation analysis
correlation coefficient
decomposition
environmental monitoring
extreme learning machine
high frequency oscillation
hybrid
intrinsic mode function
lake
least square support vector machine
low frequency oscillation
machine learning
methodology
partial autocorrelation function
prediction
priority journal
standalone model
training
validation process
variational mode decomposition algorithm
water quality
Prespa Lakes
Elsevier B.V.
Εμφάνιση Μεταδεδομένων
Επιτομή
Accurate prediction of water quality parameters plays a crucial and decisive role in environmental monitoring, ecological systems sustainability, human health, aquaculture and improved agricultural practices. In this study a new hybrid two-layer decomposition model based on the complete ensemble empirical mode decomposition algorithm with adaptive noise (CEEMDAN) and the variational mode decomposition (VMD) algorithm coupled with extreme learning machines (ELM) and also least square support vector machine (LSSVM) was designed to support real-time environmental monitoring of water quality parameters, i.e. chlorophyll-a (Chl-a) and dissolved oxygen (DO) in a Lake reservoir. Daily measurements of Chl-a and DO for June 2012–May 2013 were employed where the partial autocorrelation function was applied to screen the relevant inputs for the model construction. The variables were then split into training, validation and testing subsets where the first stage of the model testing captured the superiority of the ELM over the LSSVM algorithm. To improve these standalone predictive models, a second stage implemented a two-layer decomposition with the model inputs decomposed in the form of high and low frequency oscillations, represented by the intrinsic mode function (IMF) through the CEEMDAN algorithm. The highest frequency component, IMF1 was further decomposed with the VMD algorithm to segregate key model input features, leading to a two-layer hybrid VMD-CEEMDAN model. The VMD-CEEMDAN-ELM model was able to reduce the root mean square and the mean absolute error by about 14.04% and 7.12% for the Chl-a estimation and about 5.33% and 4.30% for the DO estimation, respectively, compared with the standalone counterparts. Overall, the developed methodology demonstrates the robustness of the two-phase VMD-CEEMDAN-ELM model in identifying and analyzing critical water quality parameters with a limited set of model construction data over daily horizons, and thus, to actively support environmental monitoring tasks, especially in case of high-frequency, and relatively complex, real-time datasets. © 2018
URI
http://hdl.handle.net/11615/71561
Collections
  • Δημοσιεύσεις σε περιοδικά, συνέδρια, κεφάλαια βιβλίων κλπ. [19674]

Related items

Showing items related by title, author, creator and subject.

  • Thumbnail

    Implementation of the Water Framework Directive: Lessons Learned and Future Perspectives for an Ecologically Meaningful Classification Based on Phytoplankton of the Status of Greek Lakes, Mediterranean Region 

    Moustaka-Gouni M., Sommer U., Economou-Amilli A., Arhonditsis G.B., Katsiapi M., Papastergiadou E., Kormas K.A., Vardaka E., Karayanni H., Papadimitriou T. (2019)
    The enactment of the Water Framework Directive (WFD) initiated scientific efforts to develop reliable methods for comparing prevailing lake conditions against reference (or nonimpaired) states, using the state of a set ...
  • Thumbnail

    Modelling of infiltration using artificial intelligence techniques in semi-arid Iran 

    Sihag P., Singh V.P., Angelaki A., Kumar V., Sepahvand A., Golia E. (2019)
    Infiltration plays a fundamental role in streamflow, groundwater recharge, subsurface flow, and surface and subsurface water quality and quantity. In this study, adaptive neuro-fuzzy inference system (ANFIS), support vector ...
  • Thumbnail

    Modeling of abrasive water jet machining using Taguchi method and artificial neural networks 

    Pappas, M.; Ntziantzias, I.; Kechagias, J.; Vaxevanidis, N. (2011)
    This work presents a hybrid approach based on the Taguchi method and the Artificial Neural Networks (ANNs) for the modeling of surface quality characteristics in Abrasive Water Jet Machining (AWJM). The selected inputs of ...
Η δικτυακή πύλη της Ευρωπαϊκής Ένωσης
Ψηφιακή Ελλάδα
ΕΣΠΑ 2007-2013
Με τη συγχρηματοδότηση της Ελλάδας και της Ευρωπαϊκής Ένωσης
htmlmap 

 

Πλοήγηση

Όλο το DSpaceΚοινότητες & ΣυλλογέςΑνά ημερομηνία δημοσίευσηςΣυγγραφείςΤίτλοιΛέξεις κλειδιάΑυτή η συλλογήΑνά ημερομηνία δημοσίευσηςΣυγγραφείςΤίτλοιΛέξεις κλειδιά

Ο λογαριασμός μου

ΣύνδεσηΕγγραφή (MyDSpace)
Πληροφορίες-Επικοινωνία
ΑπόθεσηΣχετικά μεΒοήθειαΕπικοινωνήστε μαζί μας
Επιλογή ΓλώσσαςΌλο το DSpace
EnglishΕλληνικά
Η δικτυακή πύλη της Ευρωπαϊκής Ένωσης
Ψηφιακή Ελλάδα
ΕΣΠΑ 2007-2013
Με τη συγχρηματοδότηση της Ελλάδας και της Ευρωπαϊκής Ένωσης
htmlmap