Mostra i principali dati dell'item

dc.creatorFatnassi H., Boulard T., Poncet C., Katsoulas N., Bartzanas T., Kacira M., Giday H., Lee I.-B.en
dc.date.accessioned2023-01-31T07:37:44Z
dc.date.available2023-01-31T07:37:44Z
dc.date.issued2021
dc.identifier10.3390/su13158310
dc.identifier.issn20711050
dc.identifier.urihttp://hdl.handle.net/11615/71499
dc.description.abstractThis work aims at using the Computational Fluid Dynamic (CFD) approach to study the distributed microclimate in the leaf boundary layer of greenhouse crops. Understanding the interactions in this microclimate of this natural habitat of plant pests (i.e., boundary layer of leaves), is a prerequisite for their control through targeted climate management for sustainable greenhouse production. The temperature and humidity simulations, inside the greenhouse, were performed using CFD code which has been adapted to simulate the plant activity within each mesh in the crop canopy. The air temperature and air humidity profiles within the boundary layer of leaves were deduced from the local surrounding climate parameters, based on an analytical approach, encapsulated in a Used Defined Function (UDF), and dynamically linked to the CFD solver, a work that forms an innovative and original task. Thus, this model represents a new approach to investigate the microclimate in the boundary layer of leaves under greenhouses, which resolves the issue of the inaccessibility of this area by the conventionnel measurement tools. The findings clearly showed that (i) contrarily to what might be expected, the microclimate parameters within the boundary layer of leaves are different from the surrounding climate in the greenhouse. This is particularly visible during photoperiods when the plant’s transpiration activity is at its maximum and that (ii) the climatic parameters in the leaf boundary layer are more coupled with leaf surfaces than with those of greenhouse air. These results can help developing localized intervention strategies on the microclimate within boundary layer of plant leaves, leading to improved and sustainable pest control management. The developed climatic strategies will make it possible to optimize resources use efficiency. © 2021 by the authors. Licensee MDPI, Basel, Switzerland.en
dc.language.isoenen
dc.sourceSustainability (Switzerland)en
dc.source.urihttps://www.scopus.com/inward/record.uri?eid=2-s2.0-85111609564&doi=10.3390%2fsu13158310&partnerID=40&md5=a4d09533acd4a103078566b57a870d50
dc.subjectair temperatureen
dc.subjectboundary layeren
dc.subjectcomputational fluid dynamicsen
dc.subjecthumidityen
dc.subjectleaf morphologyen
dc.subjectmicroclimateen
dc.subjectpest controlen
dc.subjectplanten
dc.subjecttranspirationen
dc.subjectMDPIen
dc.titleComputational fluid dynamics modelling of the microclimate within the boundary layer of leaves leading to improved pest control management and low-input greenhouseen
dc.typejournalArticleen


Files in questo item

FilesDimensioneFormatoMostra

Nessun files in questo item.

Questo item appare nelle seguenti collezioni

Mostra i principali dati dell'item