Εμφάνιση απλής εγγραφής

dc.creatorBalkourani G., Damartzis T., Brouzgou A., Tsiakaras P.en
dc.date.accessioned2023-01-31T07:35:33Z
dc.date.available2023-01-31T07:35:33Z
dc.date.issued2022
dc.identifier10.3390/s22010355
dc.identifier.issn14248220
dc.identifier.urihttp://hdl.handle.net/11615/71084
dc.description.abstractThe high conductivity of graphene material (or its derivatives) and its very large surface area enhance the direct electron transfer, improving non-enzymatic electrochemical sensors sensitivity and its other characteristics. The offered large pores facilitate analyte transport enabling glucose detection even at very low concentration values. In the current review paper we classified the enzymeless graphene-based glucose electrocatalysts’ synthesis methods that have been followed into the last few years into four main categories: (i) direct growth of graphene (or oxides) on metallic substrates, (ii) in-situ growth of metallic nanoparticles into graphene (or oxides) matrix, (iii) laser-induced graphene electrodes and (iv) polymer functionalized graphene (or oxides) electrodes. The increment of the specific surface area and the high degree reduction of the electrode internal resistance were recognized as their common targets. Analyzing glucose electrooxidation mechanism over Cu-Co-and Ni-(oxide)/graphene (or derivative) electrocatalysts, we deduced that glucose electrochemical sensing properties, such as sensitivity, detection limit and linear detection limit, totally depend on the route of the mass and charge transport between metal(II)/metal(III); and so both (specific area and internal resistance) should have the optimum values. © 2022 by the authors. Licensee MDPI, Basel, Switzerland.en
dc.language.isoenen
dc.sourceSensorsen
dc.source.urihttps://www.scopus.com/inward/record.uri?eid=2-s2.0-85122107524&doi=10.3390%2fs22010355&partnerID=40&md5=dbe79326c593bc9e91d498466bd483ea
dc.subjectCobalt compoundsen
dc.subjectCopper oxidesen
dc.subjectCost effectivenessen
dc.subjectElectrocatalystsen
dc.subjectElectrochemical electrodesen
dc.subjectElectrochemical sensorsen
dc.subjectElectrooxidationen
dc.subjectGlucoseen
dc.subjectGrapheneen
dc.subjectGraphite electrodesen
dc.subjectMetalsen
dc.subjectNanostructured materialsen
dc.subjectReductionen
dc.subjectSubstratesen
dc.subjectSynthesis (chemical)en
dc.subjectCobalt oxide nanomaterialen
dc.subjectCopper oxide nanomaterialen
dc.subjectDirect growthen
dc.subjectFunctionalizeden
dc.subjectGlucose electrooxi-dation mechanismen
dc.subjectGraphene-based nanomaterialen
dc.subjectIn-situ growthen
dc.subjectLaser induceden
dc.subjectNickel oxide nanomaterialen
dc.subjectPolymer functionalizeden
dc.subjectReduced graphene oxidesen
dc.subjectNickel oxideen
dc.subjectglucoseen
dc.subjectgraphiteen
dc.subjectnanomaterialen
dc.subjectoxideen
dc.subjectcost benefit analysisen
dc.subjectelectrochemical analysisen
dc.subjectelectrodeen
dc.subjectgenetic proceduresen
dc.subjectBiosensing Techniquesen
dc.subjectCost-Benefit Analysisen
dc.subjectElectrochemical Techniquesen
dc.subjectElectrodesen
dc.subjectGlucoseen
dc.subjectGraphiteen
dc.subjectNanostructuresen
dc.subjectOxidesen
dc.subjectMDPIen
dc.titleCost Effective Synthesis of Graphene Nanomaterials for Non-Enzymatic Electrochemical Sensors for Glucose: A Comprehensive Reviewen
dc.typeotheren


Αρχεία σε αυτό το τεκμήριο

ΑρχείαΜέγεθοςΤύποςΠροβολή

Δεν υπάρχουν αρχεία που να σχετίζονται με αυτό το τεκμήριο.

Αυτό το τεκμήριο εμφανίζεται στις ακόλουθες συλλογές

Εμφάνιση απλής εγγραφής