Logo
    • English
    • Ελληνικά
    • Deutsch
    • français
    • italiano
    • español
  • English 
    • English
    • Ελληνικά
    • Deutsch
    • français
    • italiano
    • español
  • Login
View Item 
  •   University of Thessaly Institutional Repository
  • Επιστημονικές Δημοσιεύσεις Μελών ΠΘ (ΕΔΠΘ)
  • Δημοσιεύσεις σε περιοδικά, συνέδρια, κεφάλαια βιβλίων κλπ.
  • View Item
  •   University of Thessaly Institutional Repository
  • Επιστημονικές Δημοσιεύσεις Μελών ΠΘ (ΕΔΠΘ)
  • Δημοσιεύσεις σε περιοδικά, συνέδρια, κεφάλαια βιβλίων κλπ.
  • View Item
JavaScript is disabled for your browser. Some features of this site may not work without it.
Institutional repository
All of DSpace
  • Communities & Collections
  • By Issue Date
  • Authors
  • Titles
  • Subjects

A Framework for Efficient N-Way Interaction Testing in Case/Control Studies with Categorical Data

Thumbnail
Author
Aristodimou A., Antoniades A., Dardiotis E., Loizidou E., Spyrou G., Votsi C., Kyproula C., Pantzaris M., Grigoriadis N., Hadjigeorgiou G., Kyriakides T., Pattichi C.
Date
2021
Language
en
DOI
10.1109/OJEMB.2021.3100416
Keyword
Encoding (symbols)
Signal encoding
Binary encodings
Categorical data
Common disease
Feature space
Interaction testing
Multiple genes
Multiple sclerosis
Multiple testing problems
Quality control
Institute of Electrical and Electronics Engineers Inc.
Metadata display
Abstract
Goal: Most common diseases are influenced by multiple gene interactions and interactions with the environment. Performing an exhaustive search to identify such interactions is computationally expensive and needs to address the multiple testing problem. A four-step framework is proposed for the efficient identification of n-Way interactions. Methods: The framework was applied on a Multiple Sclerosis dataset with 725 subjects and 147 tagging SNPs. The first two steps of the framework are quality control and feature selection. The next step uses clustering and binary encodes the features. The final step performs the n-Way interaction testing. Results: The feature space was reduced to 7 SNPs and using the proposed binary encoding, more 2-SNP and 3-SNP interactions were identified compared to using the initial encoding. Conclusions: The framework selects informative features and with the proposed binary encoding it is able to identify more n-way interactions by increasing the power of the statistical analysis. © 2020 IEEE.
URI
http://hdl.handle.net/11615/70807
Collections
  • Δημοσιεύσεις σε περιοδικά, συνέδρια, κεφάλαια βιβλίων κλπ. [19674]
Η δικτυακή πύλη της Ευρωπαϊκής Ένωσης
Ψηφιακή Ελλάδα
ΕΣΠΑ 2007-2013
Με τη συγχρηματοδότηση της Ελλάδας και της Ευρωπαϊκής Ένωσης
htmlmap 

 

Browse

All of DSpaceCommunities & CollectionsBy Issue DateAuthorsTitlesSubjectsThis CollectionBy Issue DateAuthorsTitlesSubjects

My Account

LoginRegister (MyDspace)
Help Contact
DepositionAboutHelpContact Us
Choose LanguageAll of DSpace
EnglishΕλληνικά
Η δικτυακή πύλη της Ευρωπαϊκής Ένωσης
Ψηφιακή Ελλάδα
ΕΣΠΑ 2007-2013
Με τη συγχρηματοδότηση της Ελλάδας και της Ευρωπαϊκής Ένωσης
htmlmap