Logo
    • English
    • Ελληνικά
    • Deutsch
    • français
    • italiano
    • español
  • English 
    • English
    • Ελληνικά
    • Deutsch
    • français
    • italiano
    • español
  • Login
View Item 
  •   University of Thessaly Institutional Repository
  • Επιστημονικές Δημοσιεύσεις Μελών ΠΘ (ΕΔΠΘ)
  • Δημοσιεύσεις σε περιοδικά, συνέδρια, κεφάλαια βιβλίων κλπ.
  • View Item
  •   University of Thessaly Institutional Repository
  • Επιστημονικές Δημοσιεύσεις Μελών ΠΘ (ΕΔΠΘ)
  • Δημοσιεύσεις σε περιοδικά, συνέδρια, κεφάλαια βιβλίων κλπ.
  • View Item
JavaScript is disabled for your browser. Some features of this site may not work without it.
Institutional repository
All of DSpace
  • Communities & Collections
  • By Issue Date
  • Authors
  • Titles
  • Subjects

Optimal sensor placement for response predictions using local and global methods

Thumbnail
Author
Argyris C., Papadimitriou C., Lombaert G.
Date
2020
Language
en
DOI
10.1007/978-3-030-12075-7_26
Keyword
Bayesian networks
Covariance matrix
Forecasting
Inference engines
Location
Monte Carlo methods
Probability density function
Structural dynamics
Bayesian inference
Monte Carlo integration
Optimal sensor placement
Robust predictions
Uncertainty quantifications
Uncertainty analysis
Springer New York LLC
Metadata display
Abstract
A Bayesian framework for model-based optimal sensor placement for response predictions is presented. Our interest lies in determining the parameters of the model in order to make predictions about a particular response quantity of interest. This problem is not adequately explored since the majority of currently available literature is focused on parameter inference, rather than prediction inference. The model parameters are inferred by collecting experimental data which depends on the chosen sensor locations. The parameter values are uncertain and their uncertainty is described by a prior probability density function. The measured quantity, or data, is a quantity that can be predicted by the model which depends on both parameters and sensor locations. A prediction error equation is used to describe the discrepancy between the model-predicted measured quantity and the actual data collected from the experiment. The sensor locations are optimized with respect to prediction inference, while the case of parameter inference is derived as a special case under a more general framework. The posterior covariance matrix is used as a measure of uncertainty in the predictions. Two approaches are developed for its calculation, one global and one local. The local approach is based on sensitivities at a fixed value of the parameters, while the global approach uses Monte Carlo sampling and explores the full range of uncertainty in the parameters. A simple numerical example is presented in order to illustrate and verify the two approaches. © Society for Experimental Mechanics, Inc. 2020.
URI
http://hdl.handle.net/11615/70780
Collections
  • Δημοσιεύσεις σε περιοδικά, συνέδρια, κεφάλαια βιβλίων κλπ. [19674]
Η δικτυακή πύλη της Ευρωπαϊκής Ένωσης
Ψηφιακή Ελλάδα
ΕΣΠΑ 2007-2013
Με τη συγχρηματοδότηση της Ελλάδας και της Ευρωπαϊκής Ένωσης
htmlmap 

 

Browse

All of DSpaceCommunities & CollectionsBy Issue DateAuthorsTitlesSubjectsThis CollectionBy Issue DateAuthorsTitlesSubjects

My Account

LoginRegister (MyDspace)
Help Contact
DepositionAboutHelpContact Us
Choose LanguageAll of DSpace
EnglishΕλληνικά
Η δικτυακή πύλη της Ευρωπαϊκής Ένωσης
Ψηφιακή Ελλάδα
ΕΣΠΑ 2007-2013
Με τη συγχρηματοδότηση της Ελλάδας και της Ευρωπαϊκής Ένωσης
htmlmap