Logo
    • English
    • Ελληνικά
    • Deutsch
    • français
    • italiano
    • español
  • Ελληνικά 
    • English
    • Ελληνικά
    • Deutsch
    • français
    • italiano
    • español
  • Σύνδεση
Προβολή τεκμηρίου 
  •   Ιδρυματικό Αποθετήριο Πανεπιστημίου Θεσσαλίας
  • Επιστημονικές Δημοσιεύσεις Μελών ΠΘ (ΕΔΠΘ)
  • Δημοσιεύσεις σε περιοδικά, συνέδρια, κεφάλαια βιβλίων κλπ.
  • Προβολή τεκμηρίου
  •   Ιδρυματικό Αποθετήριο Πανεπιστημίου Θεσσαλίας
  • Επιστημονικές Δημοσιεύσεις Μελών ΠΘ (ΕΔΠΘ)
  • Δημοσιεύσεις σε περιοδικά, συνέδρια, κεφάλαια βιβλίων κλπ.
  • Προβολή τεκμηρίου
JavaScript is disabled for your browser. Some features of this site may not work without it.
Ιδρυματικό Αποθετήριο Πανεπιστημίου Θεσσαλίας
Όλο το DSpace
  • Κοινότητες & Συλλογές
  • Ανά ημερομηνία δημοσίευσης
  • Συγγραφείς
  • Τίτλοι
  • Λέξεις κλειδιά

Bayesian optimal sensor placement for crack identification in structures using strain measurements

Thumbnail
Συγγραφέας
Argyris C., Chowdhury S., Zabel V., Papadimitriou C.
Ημερομηνία
2018
Γλώσσα
en
DOI
10.1002/stc.2137
Λέξη-κλειδί
Bayesian networks
Cracks
Density functional theory
Finite element method
Inference engines
Information theory
Plates (structural components)
Strain
Bayesian inference
Crack identification
Information gain
KL-divergence
Optimal sensor placement
Probability density function
John Wiley and Sons Ltd
Εμφάνιση Μεταδεδομένων
Επιτομή
A Bayesian framework is presented for finding the optimal locations of strain sensors in a plate with a crack with the goal of identifying the crack properties, such as crack location, size, and orientation. Sensor grids of different type and size are considered. The Bayesian optimal sensor placement framework is rooted in information theory, and the optimal grid is the one which maximizes the expected information gain (Kullback–Liebler divergence) between the prior and posterior probability density functions of the crack parameters. The uncertainty in the crack parameters is accounted for naturally within the Bayesian framework through the prior probability density functions. The framework is demonstrated for a thin plate with crack, subjected to static loading. A finite element model is used to simulate the strain distributions in the plate given the crack properties. To verify the effectiveness of the proposed optimal sensor placement methodology, the estimated optimal sensor grids are used to perform Bayesian crack identification using simulated data. Parametric analyses are carried out giving emphasis on the effect of the number of sensors, grid type, and experimental data noise levels in the identification results. Copyright © 2018 John Wiley & Sons, Ltd.
URI
http://hdl.handle.net/11615/70777
Collections
  • Δημοσιεύσεις σε περιοδικά, συνέδρια, κεφάλαια βιβλίων κλπ. [19674]
Η δικτυακή πύλη της Ευρωπαϊκής Ένωσης
Ψηφιακή Ελλάδα
ΕΣΠΑ 2007-2013
Με τη συγχρηματοδότηση της Ελλάδας και της Ευρωπαϊκής Ένωσης
htmlmap 

 

Πλοήγηση

Όλο το DSpaceΚοινότητες & ΣυλλογέςΑνά ημερομηνία δημοσίευσηςΣυγγραφείςΤίτλοιΛέξεις κλειδιάΑυτή η συλλογήΑνά ημερομηνία δημοσίευσηςΣυγγραφείςΤίτλοιΛέξεις κλειδιά

Ο λογαριασμός μου

ΣύνδεσηΕγγραφή (MyDSpace)
Πληροφορίες-Επικοινωνία
ΑπόθεσηΣχετικά μεΒοήθειαΕπικοινωνήστε μαζί μας
Επιλογή ΓλώσσαςΌλο το DSpace
EnglishΕλληνικά
Η δικτυακή πύλη της Ευρωπαϊκής Ένωσης
Ψηφιακή Ελλάδα
ΕΣΠΑ 2007-2013
Με τη συγχρηματοδότηση της Ελλάδας και της Ευρωπαϊκής Ένωσης
htmlmap