Logo
    • English
    • Ελληνικά
    • Deutsch
    • français
    • italiano
    • español
  • English 
    • English
    • Ελληνικά
    • Deutsch
    • français
    • italiano
    • español
  • Login
View Item 
  •   University of Thessaly Institutional Repository
  • Επιστημονικές Δημοσιεύσεις Μελών ΠΘ (ΕΔΠΘ)
  • Δημοσιεύσεις σε περιοδικά, συνέδρια, κεφάλαια βιβλίων κλπ.
  • View Item
  •   University of Thessaly Institutional Repository
  • Επιστημονικές Δημοσιεύσεις Μελών ΠΘ (ΕΔΠΘ)
  • Δημοσιεύσεις σε περιοδικά, συνέδρια, κεφάλαια βιβλίων κλπ.
  • View Item
JavaScript is disabled for your browser. Some features of this site may not work without it.
Institutional repository
All of DSpace
  • Communities & Collections
  • By Issue Date
  • Authors
  • Titles
  • Subjects

Finite element methods for piezoelectricity and flexoelectricity with fracture mechanics applications

Thumbnail
Author
Aravas N., Mao S., Purohit P.K.
Date
2017
Language
en
Keyword
Computation theory
Crystallography
Degrees of freedom (mechanics)
Differential equations
Electric potential
Finite element method
Piezoelectricity
Polarization
Stiffness matrix
Strain
Computational framework
Displacement gradients
Finite element theories
Governing differential equations
Independent variables
Piezo-electric structures
Quadrilateral elements
Theoretical framework
Fracture mechanics
International Conference on Fracture
Metadata display
Abstract
Flexoelectricity is the coupling of polarization to strain gradients. This effect is size-dependent and is most prominent in nanoscale structures in which gradients are large. In our previous work, we have established a theoretical framework to study flexoelectricity and obtained analytic solutions for various problems. However, a rigorous and complete computational framework that accounts for the gradient effects in electromechanical problems is still absent. The challenges are that gradients bring in additional length scales and raise the order of the governing differential equations. In the present report, we overcome this difficulty by introducing a “mixed” formulation. In traditional finite element theory, displacement is the primary variable. Here, we treat displacement and displacement gradients as independent variables. This helps reduce the required smoothness of the displacement field and makes the formulation simple to implement numerically. Similarly, the electric potential and polarization are treated as two independent variables. This maintains the symmetry of the stiffness matrix. Based on this idea, we work out a weak formulation for flexoelectric solids. In accordance with the formulation, we develop a new plane-strain element, which is a 9-node quadrilateral element with 87 degrees of freedom. The proposed technique and element clears the patch tests and gives excellent agreement to benchmark problems with known analytic solutions. We study the size-effect and the flexoelectric reduction of the stress intensity factor. The shape effect could lead to ways of making piezoelectric structures from cen-tro-symmetric materials and even isotropic materials. © 2017 ICF 2017 - 14th International Conference on Fracture. All rights reserved.
URI
http://hdl.handle.net/11615/70747
Collections
  • Δημοσιεύσεις σε περιοδικά, συνέδρια, κεφάλαια βιβλίων κλπ. [19674]
Η δικτυακή πύλη της Ευρωπαϊκής Ένωσης
Ψηφιακή Ελλάδα
ΕΣΠΑ 2007-2013
Με τη συγχρηματοδότηση της Ελλάδας και της Ευρωπαϊκής Ένωσης
htmlmap 

 

Browse

All of DSpaceCommunities & CollectionsBy Issue DateAuthorsTitlesSubjectsThis CollectionBy Issue DateAuthorsTitlesSubjects

My Account

LoginRegister (MyDspace)
Help Contact
DepositionAboutHelpContact Us
Choose LanguageAll of DSpace
EnglishΕλληνικά
Η δικτυακή πύλη της Ευρωπαϊκής Ένωσης
Ψηφιακή Ελλάδα
ΕΣΠΑ 2007-2013
Με τη συγχρηματοδότηση της Ελλάδας και της Ευρωπαϊκής Ένωσης
htmlmap