Logo
    • English
    • Ελληνικά
    • Deutsch
    • français
    • italiano
    • español
  • English 
    • English
    • Ελληνικά
    • Deutsch
    • français
    • italiano
    • español
  • Login
View Item 
  •   University of Thessaly Institutional Repository
  • Επιστημονικές Δημοσιεύσεις Μελών ΠΘ (ΕΔΠΘ)
  • Δημοσιεύσεις σε περιοδικά, συνέδρια, κεφάλαια βιβλίων κλπ.
  • View Item
  •   University of Thessaly Institutional Repository
  • Επιστημονικές Δημοσιεύσεις Μελών ΠΘ (ΕΔΠΘ)
  • Δημοσιεύσεις σε περιοδικά, συνέδρια, κεφάλαια βιβλίων κλπ.
  • View Item
JavaScript is disabled for your browser. Some features of this site may not work without it.
Institutional repository
All of DSpace
  • Communities & Collections
  • By Issue Date
  • Authors
  • Titles
  • Subjects

Estimation of models for cumulative infiltration of soil using machine learning methods

Thumbnail
Author
Angelaki A., Singh Nain S., Singh V., Sihag P.
Date
2021
Language
en
DOI
10.1080/09715010.2018.1531274
Keyword
Fuzzy inference
Fuzzy neural networks
Fuzzy systems
Groundwater
Infiltration
Mean square error
Membership functions
Neural networks
Parameter estimation
Petroleum reservoir evaluation
Sensitivity analysis
Soils
Support vector machines
Adaptive neuro-fuzzy inference system
Correlation coefficient
Cumulative infiltrations
Estimation performance
Influencing parameters
Machine learning methods
Root mean square errors
Triangular membership functions
Learning systems
Taylor and Francis Ltd.
Metadata display
Abstract
Knowledge of cumulative infiltration of soil is necessary for irrigation, surface flow, groundwater recharge and many other hydrological processes. In the present study, the Support Vector Machine (SVM), artificial neural network (ANN) and adaptive Neuro-fuzzy inference system (ANFIS) were employed to estimate the cumulative infiltration of soil. For this study, a data set containing 106 experimental observations were analyzed. Out of 106, 70 % of data was selected for preparing different algorithms whereas rest 30% data was selected to test the models. The models accuracy was depended upon the two performance evaluation parameter which is correlation coefficient (CC) and root mean square error (RMSE). Results of performance evaluation parameters suggest that triangular membership function-based ANFIS model works well than SVM and ANN models. While SVM and ANN models also give a good estimation performance. Sensitivity analysis concludes that the parameter, time (t) is the most influencing parameter for the modeling of cumulative infiltration of soil for this data set. © 2018 Indian Society for Hydraulics.
URI
http://hdl.handle.net/11615/70601
Collections
  • Δημοσιεύσεις σε περιοδικά, συνέδρια, κεφάλαια βιβλίων κλπ. [19674]
Η δικτυακή πύλη της Ευρωπαϊκής Ένωσης
Ψηφιακή Ελλάδα
ΕΣΠΑ 2007-2013
Με τη συγχρηματοδότηση της Ελλάδας και της Ευρωπαϊκής Ένωσης
htmlmap 

 

Browse

All of DSpaceCommunities & CollectionsBy Issue DateAuthorsTitlesSubjectsThis CollectionBy Issue DateAuthorsTitlesSubjects

My Account

LoginRegister (MyDspace)
Help Contact
DepositionAboutHelpContact Us
Choose LanguageAll of DSpace
EnglishΕλληνικά
Η δικτυακή πύλη της Ευρωπαϊκής Ένωσης
Ψηφιακή Ελλάδα
ΕΣΠΑ 2007-2013
Με τη συγχρηματοδότηση της Ελλάδας και της Ευρωπαϊκής Ένωσης
htmlmap