Logo
    • English
    • Ελληνικά
    • Deutsch
    • français
    • italiano
    • español
  • English 
    • English
    • Ελληνικά
    • Deutsch
    • français
    • italiano
    • español
  • Login
View Item 
  •   University of Thessaly Institutional Repository
  • Επιστημονικές Δημοσιεύσεις Μελών ΠΘ (ΕΔΠΘ)
  • Δημοσιεύσεις σε περιοδικά, συνέδρια, κεφάλαια βιβλίων κλπ.
  • View Item
  •   University of Thessaly Institutional Repository
  • Επιστημονικές Δημοσιεύσεις Μελών ΠΘ (ΕΔΠΘ)
  • Δημοσιεύσεις σε περιοδικά, συνέδρια, κεφάλαια βιβλίων κλπ.
  • View Item
JavaScript is disabled for your browser. Some features of this site may not work without it.
Institutional repository
All of DSpace
  • Communities & Collections
  • By Issue Date
  • Authors
  • Titles
  • Subjects

Applying Long Short-Term Memory Networks for natural gas demand prediction

Thumbnail
Author
Anagnostis A., Papageorgiou E., Dafopoulos V., Bochtis D.
Date
2019
Language
en
DOI
10.1109/IISA.2019.8900746
Keyword
Brain
Forecasting
Gases
Natural gas
Neural networks
Time series
Comparative analysis
Distribution points
LSTM
Natural gas demand
Natural gas grids
Predicting natural gas demands
Time series forecasting
Time series prediction
Long short-term memory
Institute of Electrical and Electronics Engineers Inc.
Metadata display
Abstract
Long Short-Term Memory (LSTM) algorithm encloses the characteristics of the advanced recurrent neural network methods and is used in this research study to forecast the natural gas demand in Greece in the short-term. LSTM is generally recognized by researchers as a key tool for time series prediction problems and has found important applicability in many different scientific domains over the last years. In this study, we apply the proposed LSTM for the purposes of a day-ahead natural gas demand prediction to three distribution points (cities) of Greece's natural gas grid. A comparative analysis was conducted by different Artificial Neural Network (ANN) structures and the results offer a deeper understanding of the large urban centers characteristics, showing the efficacy of the proposed methodology on predicting natural gas demand in a daily basis. © 2019 IEEE.
URI
http://hdl.handle.net/11615/70501
Collections
  • Δημοσιεύσεις σε περιοδικά, συνέδρια, κεφάλαια βιβλίων κλπ. [19674]

Related items

Showing items related by title, author, creator and subject.

  • Thumbnail

    The analysis of ‘Financial Resource Curse’ hypothesis for developed countries: Evidence from asymmetric effects with quantile regression 

    Dogan E., Altinoz B., Tzeremes P. (2020)
    A vast body of literature either proxies natural resource abundance with total rents or focuses on the natural resource curse hypothesis. Furthermore, most empirical studies in the literature use traditional estimation ...
  • Thumbnail

    The transcription factor BCL-6 controls early development of innate-like T cells 

    Gioulbasani M., Galaras A., Grammenoudi S., Moulos P., Dent A.L., Sigvardsson M., Hatzis P., Kee B.L., Verykokakis M. (2020)
    Innate T cells, including invariant natural killer T (iNKT) and mucosal-associated innate T (MAIT) cells, are a heterogeneous T lymphocyte population with effector properties preprogrammed during their thymic differentiation. ...
  • Thumbnail

    A planning approach for reducing the impact of natural gas network on electricity markets 

    Diagoupis T.D., Andrianesis P.E., Dialynas E.N. (2016)
    In this paper, we present a planning approach for reducing the impact that failure events in the natural gas (NG) network impose on the electricity market operation. For this purpose, an efficient computational methodology ...
Η δικτυακή πύλη της Ευρωπαϊκής Ένωσης
Ψηφιακή Ελλάδα
ΕΣΠΑ 2007-2013
Με τη συγχρηματοδότηση της Ελλάδας και της Ευρωπαϊκής Ένωσης
htmlmap 

 

Browse

All of DSpaceCommunities & CollectionsBy Issue DateAuthorsTitlesSubjectsThis CollectionBy Issue DateAuthorsTitlesSubjects

My Account

LoginRegister (MyDspace)
Help Contact
DepositionAboutHelpContact Us
Choose LanguageAll of DSpace
EnglishΕλληνικά
Η δικτυακή πύλη της Ευρωπαϊκής Ένωσης
Ψηφιακή Ελλάδα
ΕΣΠΑ 2007-2013
Με τη συγχρηματοδότηση της Ελλάδας και της Ευρωπαϊκής Ένωσης
htmlmap