dc.creator | Ali A., Guo D., Li Y., Shaheen S.M., Wahid F., Antoniadis V., Abdelrahman H., Al-Solaimani S.G., Li R., Tsang D.C.W., Rinklebe J., Zhang Z. | en |
dc.date.accessioned | 2023-01-31T07:30:56Z | |
dc.date.available | 2023-01-31T07:30:56Z | |
dc.date.issued | 2021 | |
dc.identifier | 10.1016/j.chemosphere.2021.129692 | |
dc.identifier.issn | 00456535 | |
dc.identifier.uri | http://hdl.handle.net/11615/70438 | |
dc.description.abstract | Streptomyces pactum (Act12), an agent of a gentle in situ remediation approach, has been recently used in few works in phytoextraction trials; however, the impact of Act12 on soil quality and metal phytoavailability has not been assessed in multi-metal contaminated soils. Consequently, here we assessed the potential impact of Act12 on the wheat (Triticum aestivum L.) growth, antioxidants activity, and the metal bioavailability in three industrial and mining soils collected from China and contained up to 118, 141, 339, and 6625 mg Cd, Cu, Pb, and Zn kg−1 soil, respectively. The Act12 was applied at 0 (control), 0.75 (Act-0.75), 1.50 (Act-1.5), and 2.25 (Act-2.25) g kg−1 (dry weight base) to the three soils; thereafter, the soils were cultivated with wheat (bio-indicator plant) in a pot experiment. The addition of Act12 (at Act-1.5 and Act-2.25) promoted wheat growth in the three soils and significantly increased the content of Cd, Cu, and Zn in the roots and shoots and Pb only in the roots (up to 121%). The Act12-induced increase in metals uptake by wheat might be attributed to the associated decrease in soil pH and/or the increase of metal chelation and production of indole acetic acid and siderophores. The Act12 significantly decreased the antioxidant activities and lipid peroxidation in wheat, which indicates that Act12 may mitigate metals stress in contaminated soils. Enhancing metals phytoextraction using Act12 is a promising ecofriendly approach for phytoremediation of metal-contaminated mining soils that can be safely utilized with non-edible plants and/or bioenergy crops. © 2021 Elsevier Ltd | en |
dc.language.iso | en | en |
dc.source | Chemosphere | en |
dc.source.uri | https://www.scopus.com/inward/record.uri?eid=2-s2.0-85100036896&doi=10.1016%2fj.chemosphere.2021.129692&partnerID=40&md5=4127255dea1213b1e5d0bf77ef509d09 | |
dc.subject | Antioxidants | en |
dc.subject | Bacteria | en |
dc.subject | Biochemistry | en |
dc.subject | Biofuels | en |
dc.subject | Bioremediation | en |
dc.subject | Contamination | en |
dc.subject | Crops | en |
dc.subject | Metals | en |
dc.subject | Plants (botany) | en |
dc.subject | Soil pollution | en |
dc.subject | Soil quality | en |
dc.subject | Anti-oxidant activities | en |
dc.subject | Contaminated soils | en |
dc.subject | In-situ remediation | en |
dc.subject | Lipid peroxidation | en |
dc.subject | Metal bioavailability | en |
dc.subject | Phytoavailability | en |
dc.subject | Potential impacts | en |
dc.subject | Wheat (Triticum aestivum L.) | en |
dc.subject | Soil pollution control | en |
dc.subject | antioxidant | en |
dc.subject | cadmium | en |
dc.subject | copper | en |
dc.subject | environmental marker | en |
dc.subject | heavy metal | en |
dc.subject | indoleacetic acid | en |
dc.subject | lead | en |
dc.subject | siderophore | en |
dc.subject | zinc | en |
dc.subject | cadmium | en |
dc.subject | heavy metal | en |
dc.subject | antioxidant | en |
dc.subject | bacterium | en |
dc.subject | bioavailability | en |
dc.subject | contaminated land | en |
dc.subject | phytoremediation | en |
dc.subject | root-shoot ratio | en |
dc.subject | siderophore | en |
dc.subject | soil quality | en |
dc.subject | soil remediation | en |
dc.subject | trace metal | en |
dc.subject | wheat | en |
dc.subject | antioxidant activity | en |
dc.subject | Article | en |
dc.subject | bioenergy | en |
dc.subject | chelation | en |
dc.subject | China | en |
dc.subject | controlled study | en |
dc.subject | dry weight | en |
dc.subject | green chemistry | en |
dc.subject | lipid peroxidation | en |
dc.subject | metal extraction | en |
dc.subject | mining | en |
dc.subject | nonhuman | en |
dc.subject | phytoavailability | en |
dc.subject | phytoremediation | en |
dc.subject | plant growth | en |
dc.subject | plant root | en |
dc.subject | shoot | en |
dc.subject | soil acidity | en |
dc.subject | soil microflora | en |
dc.subject | soil pollution | en |
dc.subject | soil quality | en |
dc.subject | species cultivation | en |
dc.subject | Streptomyces | en |
dc.subject | Streptomyces pactum | en |
dc.subject | Triticum aestivum | en |
dc.subject | bioremediation | en |
dc.subject | soil | en |
dc.subject | soil pollutant | en |
dc.subject | Streptomyces | en |
dc.subject | wheat | en |
dc.subject | China | en |
dc.subject | Indicator indicator | en |
dc.subject | Streptomyces pactum | en |
dc.subject | Triticum aestivum | en |
dc.subject | Biodegradation, Environmental | en |
dc.subject | Cadmium | en |
dc.subject | China | en |
dc.subject | Metals, Heavy | en |
dc.subject | Soil | en |
dc.subject | Soil Pollutants | en |
dc.subject | Streptomyces | en |
dc.subject | Triticum | en |
dc.subject | Elsevier Ltd | en |
dc.title | Streptomyces pactum addition to contaminated mining soils improved soil quality and enhanced metals phytoextraction by wheat in a green remediation trial | en |
dc.type | journalArticle | en |