Εμφάνιση απλής εγγραφής

dc.creatorMellios, Nikolaosen
dc.creatorMoe, Jannickeen
dc.creatorLaspidou, Chrysien
dc.date.accessioned2020-11-03T10:55:59Z
dc.date.available2020-11-03T10:55:59Z
dc.date.issued2020-04-22
dc.identifierhttps://doi.org/10.3390/w12041191
dc.identifier.urihttp://hdl.handle.net/11615/54407
dc.language.isoenen
dc.relationEuropean Union Horizon 2020 Research and Innovation Staff Exchange programme under Grant Agreement No. 734409 WATER4CITIESen
dc.rightsAttribution-NonCommercial-NoDerivatives 4.0 Internationalen
dc.rights.urihttp://creativecommons.org/licenses/by-nc-nd/4.0/en
dc.sourceMultidisciplinary Digital Publishing Instituteen
dc.subjectcyanobacteria bloomsen
dc.subjecteutrophicationen
dc.subjectlakes monitoring dataen
dc.subjectpath analysisen
dc.subjectmachine learning algorithmsen
dc.subjectDecision Treeen
dc.subjectK-Nearest Neighboren
dc.subjectSupport-vector Machineen
dc.subjectRandom Foresten
dc.subjectmodel validationen
dc.titleMachine Learning Approaches for Predicting Health Risk of Cyanobacterial Blooms in Northern European Lakesen
dc.typejournalArticleen
dc.rights.accessRightsfreeen
dc.identifier.bibliographicCitationMellios, N.; Moe, S.J.; Laspidou, C. Machine Learning Approaches for Predicting Health Risk of Cyanobacterial Blooms in Northern European Lakes. Water 2020, 12, 1191.en


Αρχεία σε αυτό το τεκμήριο

Thumbnail
Thumbnail

Αυτό το τεκμήριο εμφανίζεται στις ακόλουθες συλλογές

Εμφάνιση απλής εγγραφής

Attribution-NonCommercial-NoDerivatives 4.0 International
Attribution-NonCommercial-NoDerivatives 4.0 International