Logo
    • English
    • Ελληνικά
    • Deutsch
    • français
    • italiano
    • español
  • Ελληνικά 
    • English
    • Ελληνικά
    • Deutsch
    • français
    • italiano
    • español
  • Σύνδεση
Προβολή τεκμηρίου 
  •   Ιδρυματικό Αποθετήριο Πανεπιστημίου Θεσσαλίας
  • Επιστημονικές Δημοσιεύσεις Μελών ΠΘ (ΕΔΠΘ)
  • Δημοσιεύσεις σε περιοδικά, συνέδρια, κεφάλαια βιβλίων κλπ.
  • Προβολή τεκμηρίου
  •   Ιδρυματικό Αποθετήριο Πανεπιστημίου Θεσσαλίας
  • Επιστημονικές Δημοσιεύσεις Μελών ΠΘ (ΕΔΠΘ)
  • Δημοσιεύσεις σε περιοδικά, συνέδρια, κεφάλαια βιβλίων κλπ.
  • Προβολή τεκμηρίου
JavaScript is disabled for your browser. Some features of this site may not work without it.
Ιδρυματικό Αποθετήριο Πανεπιστημίου Θεσσαλίας
Όλο το DSpace
  • Κοινότητες & Συλλογές
  • Ανά ημερομηνία δημοσίευσης
  • Συγγραφείς
  • Τίτλοι
  • Λέξεις κλειδιά

Intelligent identification of biomarkers for the study of obstructive nephropathy

Thumbnail
Συγγραφέας
Valavanis, I.; Maglogiannis, I.; Chatziioannou, A.
Ημερομηνία
2013
DOI
10.3233/IDT-120148
Λέξη-κλειδί
biomarkers
classification
feature selection
gene
Medical decision support
micro-RNA
obstructed nephropathy
Classification accuracy
Feature selection methods
Forward feature selections
Intelligent identification
Medical decision supports
Messenger RNAs (mRNA)
Nephropathy
Artificial intelligence
Classification (of information)
Data mining
Decision support systems
Feature extraction
Genes
RNA
Data integration
Εμφάνιση Μεταδεδομένων
Επιτομή
Obstructive Nephropathy (ON) is a renal disease, which pathological profile is the result of various, tightly coupled and co-regulated, molecular processes, pervading various layers of molecular dissection. In this context, an important goal is the integration of experimental data providing multi-faceted description regarding the interweaving of the cell's molecular circuitry (here transcriptomic and epigenomic) and how this confers to the variability of the disease phenotype. The exploitation of tools or methodologies from the field of artificial intelligence, decision support and data mining aspires to facilitate the interpretation procedure of such experimental data. In the current study, we apply an intelligent workflow for predictive analytical purposes, on an integrative ON dataset, encompassing human micro-RNA (miRNA) microarray data and mouse orthologous messenger RNA (mRNA) microarray data. The workflow is implemented in Rapidminer, a powerful open access data mining and predictive analysis platform. Our scope is i) the selection of the most reliable predictive biomarkers in the two aforementioned molecular information levels and ii) the assessment of their classification power for discriminating ON severity related classes. A forward feature selection method and an evolutionary feature selection method are initially applied. The selected features, which comprise ON biomarkers to be evaluated in future studies, are next fed to a series of classifiers and results show that high classification accuracies could be obtained. © 2013-IOS Press and the authors. All rights reserved.
URI
http://hdl.handle.net/11615/34242
Collections
  • Δημοσιεύσεις σε περιοδικά, συνέδρια, κεφάλαια βιβλίων κλπ. [19674]
Η δικτυακή πύλη της Ευρωπαϊκής Ένωσης
Ψηφιακή Ελλάδα
ΕΣΠΑ 2007-2013
Με τη συγχρηματοδότηση της Ελλάδας και της Ευρωπαϊκής Ένωσης
htmlmap 

 

Πλοήγηση

Όλο το DSpaceΚοινότητες & ΣυλλογέςΑνά ημερομηνία δημοσίευσηςΣυγγραφείςΤίτλοιΛέξεις κλειδιάΑυτή η συλλογήΑνά ημερομηνία δημοσίευσηςΣυγγραφείςΤίτλοιΛέξεις κλειδιά

Ο λογαριασμός μου

ΣύνδεσηΕγγραφή (MyDSpace)
Πληροφορίες-Επικοινωνία
ΑπόθεσηΣχετικά μεΒοήθειαΕπικοινωνήστε μαζί μας
Επιλογή ΓλώσσαςΌλο το DSpace
EnglishΕλληνικά
Η δικτυακή πύλη της Ευρωπαϊκής Ένωσης
Ψηφιακή Ελλάδα
ΕΣΠΑ 2007-2013
Με τη συγχρηματοδότηση της Ελλάδας και της Ευρωπαϊκής Ένωσης
htmlmap