Show simple item record

dc.creatorTanaka, M.en
dc.description.abstractAn advanced kinetic simulation method has been developed and implemented in the HIDENEK code to study large space-scale, low-frequency electromagnetic phenomena occurring in inhomogeneous plasmas. The present method is specially designed for high magnetic field (Wcm ≥ Wpm), inhomogeneous plasma simulations. The guiding-center approximation with magnetic drifts is adopted to the perpendicular motion of the electrons, whereas the inertia effect is retained in their parallel motion. Also, a slightly backward time-decentered scheme is introduced to the equations of motion and the Maxwell equations. These equations are combined to yield the full-implicit, coupled field-particle equations which allow us to determine the future electromagnetic field in a large time step compared to the electron time scales with the diamagnetic drift and magnetization currents being included. As a demonstration of the present simulation method, three physics applications are shown for the electromagnetic beam-plasma instability, the temperature anisotropy-driven Alfven-ion-cyclotron instability, and the external kink instability of the peaked-density current beam. A remarkable pitch-angle scattering of the ions is observed in the first two applications in association with the plasma instabilities. In the third application to an inhomogeneous, finite-beta plasma of the three dimensions, a helical deformation is shown to take place to the initially straight beam and magnetic axis in an ideal magnetohydrodynamic time scale. Copyright © 1993 Academic Press. All rights reserved.en
dc.sourceJournal of Computational Physicsen
dc.titleA simulation of low-frequency electromagnetic phenomena in kinetic plasmas of three dimensionsen

Files in this item


There are no files associated with this item.

This item appears in the following Collection(s)

Show simple item record