Εμφάνιση απλής εγγραφής

dc.creatorPelekasis, N. A.en
dc.creatorGaki, A.en
dc.creatorDoinikov, A.en
dc.creatorTsamopoulos, J. A.en
dc.date.accessioned2015-11-23T10:45:19Z
dc.date.available2015-11-23T10:45:19Z
dc.date.issued2004
dc.identifier10.1017/s0022112003007365
dc.identifier.issn0022-1120
dc.identifier.urihttp://hdl.handle.net/11615/32140
dc.description.abstractThe translational velocities of two spherical gas bubbles oscillating in water, which is irradiated by a high-intensity acoustic wave field, are calculated. The two bubbles are assumed to be located far enough apart so that shape oscillations can be neglected. Viscous effects are included owing to the small size of the bubbles. An asymptotic solution is obtained that accounts for the viscous drag on each bubble, for large Re based on the radial part of the motion, in a form similar to the leading-order prediction by Levich (1962), C-D = 48/ReT; Re-T --> infinity based on the translational velocity. In this context the translational velocity of each bubble, which is a direct measure of the secondary Bjerknes force between the two bubbles, is evaluated asymptotically and calculated numerically for sound intensities as large as the Blake threshold. Two cases are examined. First, two bubbles of unequal size with radii on the order of 100 pm are subjected to a sound wave with amplitude P-A < 1.0 bar and forcing frequency w(f) =0.51w(10), so that the second harmonic falls within the range defined by the eigenfrequencies of the two bubbles, w(10)<2w(f)<w(20). It is shown that their translational velocity changes sign, becoming repulsive as PA increases from 0.05 to 0.1 bar due to the growing second harmonic, 2w(f), of the forcing frequency. However, as the amplitude of sound further increases, P-A approximate to 0.5 bar, the two bubbles attract each other due to the growth of even higher harmonics that fall outside the range defined by the eigenfrequencies of the two bubbles. Second, the case of much smaller bubbles is examined, radii on the order of 10 mum, driven well below resonance, w(f)/2pi = 20 kHz, at very large sound intensities, P-A approximate to 1 bar. Numerical simulations show that the forces between the two bubbles tend to be attractive, except for a narrow region of bubble size corresponding to a nonlinear resonance related to the Blake threshold. As the distance between them decreases, the region of repulsion is shifted, indicating sign inversion of their mutual force. Extensive numerical simulations indicate the formation of bubble pairs with constant average inter-bubble distance, consisting of bubbles with equilibrium radii determined by the primary and secondary resonance frequencies for small and moderate sound amplitudes or by the Blake threshold for large sound amplitudes. It is conjectured that in experiments where 'acoustic streamers' are observed, which are filamentary structures consisting of bubbles that are aligned and move rapidly in a cavitating fluid at nearly constant distances from each other, bubbles with size determined by the Blake threshold are predominant because those with size determined by linear resonance are larger and therefore become unstable due to shape oscillations.en
dc.sourceJournal of Fluid Mechanicsen
dc.source.uri<Go to ISI>://WOS:000220638800015
dc.subjectSPHERICAL GAS BUBBLEen
dc.subjectSOUND FIELDen
dc.subjectBOUNDARY-LAYERen
dc.subjectOSCILLATIONSen
dc.subjectDYNAMICSen
dc.subjectPRESSUREen
dc.subjectMechanicsen
dc.subjectPhysics, Fluids & Plasmasen
dc.titleSecondary Bjerknes forces between two bubbles and the phenomenon of acoustic streamersen
dc.typejournalArticleen


Αρχεία σε αυτό το τεκμήριο

ΑρχείαΜέγεθοςΤύποςΠροβολή

Δεν υπάρχουν αρχεία που να σχετίζονται με αυτό το τεκμήριο.

Αυτό το τεκμήριο εμφανίζεται στις ακόλουθες συλλογές

Εμφάνιση απλής εγγραφής