Logo
    • English
    • Ελληνικά
    • Deutsch
    • français
    • italiano
    • español
  • Ελληνικά 
    • English
    • Ελληνικά
    • Deutsch
    • français
    • italiano
    • español
  • Σύνδεση
Προβολή τεκμηρίου 
  •   Ιδρυματικό Αποθετήριο Πανεπιστημίου Θεσσαλίας
  • Επιστημονικές Δημοσιεύσεις Μελών ΠΘ (ΕΔΠΘ)
  • Δημοσιεύσεις σε περιοδικά, συνέδρια, κεφάλαια βιβλίων κλπ.
  • Προβολή τεκμηρίου
  •   Ιδρυματικό Αποθετήριο Πανεπιστημίου Θεσσαλίας
  • Επιστημονικές Δημοσιεύσεις Μελών ΠΘ (ΕΔΠΘ)
  • Δημοσιεύσεις σε περιοδικά, συνέδρια, κεφάλαια βιβλίων κλπ.
  • Προβολή τεκμηρίου
JavaScript is disabled for your browser. Some features of this site may not work without it.
Ιδρυματικό Αποθετήριο Πανεπιστημίου Θεσσαλίας
Όλο το DSpace
  • Κοινότητες & Συλλογές
  • Ανά ημερομηνία δημοσίευσης
  • Συγγραφείς
  • Τίτλοι
  • Λέξεις κλειδιά

Bagged nonlinear Hebbian learning algorithm for fuzzy cognitive maps working on classification tasks

Thumbnail
Συγγραφέας
Papageorgiou, E. I.; Oikonomou, P.; Kannappan, A.
Ημερομηνία
2012
DOI
10.1007/978-3-642-30448-4_20
Λέξη-κλειδί
Bagging approach
Base learners
Classification accuracy
Classification tasks
Connection matrices
Fuzzy cognitive map
Hebbian learning
Hebbian learning algorithm
High impact
Historical data
Learning approach
Artificial intelligence
Fuzzy rules
Fuzzy systems
Learning algorithms
Εμφάνιση Μεταδεδομένων
Επιτομή
Learning of fuzzy cognitive maps (FCMs) is one of the most useful characteristics which have a high impact on modeling and inference capabilities of them. The learning approaches for FCMs are concentrated on learning the connection matrix, based either on expert intervention and/or on the available historical data. Most learning approaches for FCMs are Hebbian-based and evolutionary-based algorithms. A new learning algorithm for FCMs is proposed in this research work, inheriting the main aspects of the bagging approach which is an ensemble based learning approach. The FCM nonlinear Hebbian learning (NHL) algorithm enhanced by the bagging technique is investigated contributing to an approach where the model is trained using NHL algorithm as a base learner classifier. This work is inspired from the neural networks ensembles and it is used to learn the FCM ensembles produced by the NHL exploiting better classification accuracies. © 2012 Springer-Verlag .
URI
http://hdl.handle.net/11615/31770
Collections
  • Δημοσιεύσεις σε περιοδικά, συνέδρια, κεφάλαια βιβλίων κλπ. [19674]

Related items

Showing items related by title, author, creator and subject.

  • Thumbnail

    Εξυπνοι και αλληλεπιδρώμενοι πράκτορες e-learning, smartive e-learning agents - smart and interactive e-learning agents 

    Μόσχος, Λάκης (2011)
  • Thumbnail

    Μηχανική και ενισχυτική μάθηση μέσω του αλγορίθμου Q-learning 

    Μπάτσιος, Ιωάννης (2021)
  • Thumbnail

    Motivating Engineer Students in E-learning Courses with Problem Based Learning and Self-Regulated Learning on the apT2CLE4‘Research Methods’ Environment 

    Paraskeva F., Alexiou A., Bouta H., Mysirlaki S., Sotiropoulos D.J., Souki A.-M. (2019)
    More and more university programs try to establish an understanding of research methodology with relevant courses at undergraduate schools. Engineer students should have adequate academic training and experience to gain ...
Η δικτυακή πύλη της Ευρωπαϊκής Ένωσης
Ψηφιακή Ελλάδα
ΕΣΠΑ 2007-2013
Με τη συγχρηματοδότηση της Ελλάδας και της Ευρωπαϊκής Ένωσης
htmlmap 

 

Πλοήγηση

Όλο το DSpaceΚοινότητες & ΣυλλογέςΑνά ημερομηνία δημοσίευσηςΣυγγραφείςΤίτλοιΛέξεις κλειδιάΑυτή η συλλογήΑνά ημερομηνία δημοσίευσηςΣυγγραφείςΤίτλοιΛέξεις κλειδιά

Ο λογαριασμός μου

ΣύνδεσηΕγγραφή (MyDSpace)
Πληροφορίες-Επικοινωνία
ΑπόθεσηΣχετικά μεΒοήθειαΕπικοινωνήστε μαζί μας
Επιλογή ΓλώσσαςΌλο το DSpace
EnglishΕλληνικά
Η δικτυακή πύλη της Ευρωπαϊκής Ένωσης
Ψηφιακή Ελλάδα
ΕΣΠΑ 2007-2013
Με τη συγχρηματοδότηση της Ελλάδας και της Ευρωπαϊκής Ένωσης
htmlmap