Εμφάνιση απλής εγγραφής

dc.creatorMoutselos, K.en
dc.creatorMaglogiannis, I.en
dc.creatorChatziioannou, A.en
dc.date.accessioned2015-11-23T10:40:02Z
dc.date.available2015-11-23T10:40:02Z
dc.date.issued2012
dc.identifier10.1109/BIBE.2012.6399761
dc.identifier.isbn9781467343589
dc.identifier.urihttp://hdl.handle.net/11615/31188
dc.description.abstractIn this work, two disparate datasets, concerning the study of the same physiological type of cutaneous melanoma but derived from different donors, one of image (dermatoscopy) and the other of molecular (trascriptomic expression) origin are utilized, so as to form an expanded in description depth, integrative dataset. Four different imputation methods are employed in order to derive the unified dataset, prior the application of backward selection together with ensemble classifiers (random forests). The various imputation schemes applied, manage to emulate the effect of biological noise on the unified dataset, adding realistic signal variation. Thus, they immunize the discovery process in the integrative dataset, from false positive artifacts, which do not have a true differential effect. The results suggest that the expansion of the feature space through the data integration and the exploitation of elaborate imputation schemes in general, aid the classification task, imparting stability as regards the derivation of the putative classifiers. © 2012 IEEE.en
dc.source.urihttp://www.scopus.com/inward/record.url?eid=2-s2.0-84872869685&partnerID=40&md5=bd6bf3b091cc951dc1ad179e3615760b
dc.subjectbiomarker inferenceen
dc.subjectcutaneous melanomaen
dc.subjectdata integrationen
dc.subjectfeature selectionen
dc.subjectrandom foresten
dc.subjectClassification tasksen
dc.subjectData setsen
dc.subjectDifferential effecten
dc.subjectEnsemble classifiersen
dc.subjectFalse positiveen
dc.subjectFeature spaceen
dc.subjectHeterogeneous dataen
dc.subjectImputation methodsen
dc.subjectRandom forestsen
dc.subjectSignal variationsen
dc.subjectData fusionen
dc.subjectDecision treesen
dc.subjectDermatologyen
dc.subjectFeature extractionen
dc.subjectOncologyen
dc.subjectBioinformaticsen
dc.titleHeterogeneous data fusion and selection in high-volume molecular and imaging datasetsen
dc.typeconferenceItemen


Αρχεία σε αυτό το τεκμήριο

ΑρχείαΜέγεθοςΤύποςΠροβολή

Δεν υπάρχουν αρχεία που να σχετίζονται με αυτό το τεκμήριο.

Αυτό το τεκμήριο εμφανίζεται στις ακόλουθες συλλογές

Εμφάνιση απλής εγγραφής