Logo
    • English
    • Ελληνικά
    • Deutsch
    • français
    • italiano
    • español
  • English 
    • English
    • Ελληνικά
    • Deutsch
    • français
    • italiano
    • español
  • Login
View Item 
  •   University of Thessaly Institutional Repository
  • Επιστημονικές Δημοσιεύσεις Μελών ΠΘ (ΕΔΠΘ)
  • Δημοσιεύσεις σε περιοδικά, συνέδρια, κεφάλαια βιβλίων κλπ.
  • View Item
  •   University of Thessaly Institutional Repository
  • Επιστημονικές Δημοσιεύσεις Μελών ΠΘ (ΕΔΠΘ)
  • Δημοσιεύσεις σε περιοδικά, συνέδρια, κεφάλαια βιβλίων κλπ.
  • View Item
JavaScript is disabled for your browser. Some features of this site may not work without it.
Institutional repository
All of DSpace
  • Communities & Collections
  • By Issue Date
  • Authors
  • Titles
  • Subjects

Mechanisms of follicular development: The role of gonadotrophins

Thumbnail
Author
Messinis, I. E.
Date
2008
DOI
10.1017/CBO9780511547287.005
Metadata display
Abstract
INTRODUCTION, Folliculogenesis in women is a dynamic and uninterrupted process from fetal life until menopause. Following pubertal maturation of the reproductive axis, all types of follicles from the primordial to the preovulatory stage are present in the human ovary. Over the past twenty years, it has become clear that these follicles represent sequential forms of the developmental process classified into eight categories, based on the size and the number of the granulosa cells (Gougeon, 1986). For example, class 1 corresponds to a secondary preantral follicle and class 8 to a large preovulatory follicle. Folliculogenesis is a lengthy process (Figure 2.1). Based on the calculation of the doubling time of granulosa cells, it is estimated that the time spent from the primordial to the preovulatory stage is approximately one year (Gougeon, 1986). However, maturation of a follicle from class 1 to class 8 is achieved within eighty-five days (Gougeon, 1986). At the beginning, proliferation of the granulosa cells on several layers takes place and the primordial follicle becomes preantral. Following this, the theca interna develops and the antral cavity is formed. The rate at which follicles leave the primordial pool is not known. However, it seems that the departure follows an ordered sequence, so that follicles formed first leave the pool earlier (Hirshfield, 1991). It remains unclear which factors are responsible for the initiation of maturation of a primordial follicle or what is the trigger for the passage of a follicle from the preantral to the antral stage (Figure 2.1). © Cambridge University Press 2008 and 2009.
URI
http://hdl.handle.net/11615/30925
Collections
  • Δημοσιεύσεις σε περιοδικά, συνέδρια, κεφάλαια βιβλίων κλπ. [19705]
htmlmap 

 

Browse

All of DSpaceCommunities & CollectionsBy Issue DateAuthorsTitlesSubjectsThis CollectionBy Issue DateAuthorsTitlesSubjects

My Account

LoginRegister (MyDspace)
Help Contact
DepositionAboutHelpContact Us
Choose LanguageAll of DSpace
EnglishΕλληνικά
htmlmap