Afficher la notice abrégée

dc.creatorManta, S.en
dc.creatorXipnitou, A.en
dc.creatorKiritsis, C.en
dc.creatorKantsadi, A. L.en
dc.creatorHayes, J. M.en
dc.creatorSkamnaki, V. T.en
dc.creatorLamprakis, C.en
dc.creatorKontou, M.en
dc.creatorZoumpoulakis, P.en
dc.creatorZographos, S. E.en
dc.creatorLeonidas, D. D.en
dc.creatorKomiotis, D.en
dc.date.accessioned2015-11-23T10:38:48Z
dc.date.available2015-11-23T10:38:48Z
dc.date.issued2012
dc.identifier10.1111/j.1747-0285.2012.01349.x
dc.identifier.issn1747-0277
dc.identifier.urihttp://hdl.handle.net/11615/30673
dc.description.abstractGlycogen phosphorylase is a molecular target for the design of potential hypoglycemic agents. Structure-based design pinpointed that the 3'-position of glucopyranose equipped with a suitable group has the potential to form interactions with enzymes cofactor, pyridoxal 5'-phosphate (PLP), thus enhancing the inhibitory potency. Hence, we have investigated the binding of two ligands, 1-(beta-d-glucopyranosyl)5-fluorouracil (GlcFU) and its 3'-CH2OH glucopyranose derivative. Both ligands were found to be low micromolar inhibitors with K-i values of 7.9 and 27.1 mu m, respectively. X-ray crystallography revealed that the 3'-CH2OH glucopyranose substituent is indeed involved in additional molecular interactions with the PLP gamma-phosphate compared with GlcFU. However, it is 3.4 times less potent. To elucidate this discovery, docking followed by postdocking Quantum Mechanics/Molecular Mechanics PoissonBoltzmann Surface Area (QM/MM-PBSA) binding affinity calculations were performed. While the docking predictions failed to reflect the kinetic results, the QM/MM-PBSA revealed that the desolvation energy cost for binding of the 3'-CH2OH-substituted glucopyranose derivative out-weigh the enthalpy gains from the extra contacts formed. The benefits of performing postdocking calculations employing a more accurate solvation model and the QM/MM-PBSA methodology in lead optimization are therefore highlighted, specifically when the role of a highly polar/charged binding interface is significant.en
dc.source.uri<Go to ISI>://WOS:000302296700005
dc.subjectbranched C-hydroxymethyl nucleosidesen
dc.subjectenzyme inhibitionen
dc.subjectglide dockingen
dc.subjectglycogen phosphorylaseen
dc.subjectQMen
dc.subjectMM-PBSAen
dc.subjectsolvation modelingen
dc.subjecttype 2en
dc.subjectdiabetesen
dc.subjectX-ray crystallographyen
dc.subjectPROTEIN-LIGAND COMPLEXESen
dc.subjectQUANTUM MECHANICS/MOLECULAR MECHANICSen
dc.subjectHEPATICen
dc.subjectGLUCOSE-PRODUCTIONen
dc.subjectIMPLICIT SOLVATION MODELSen
dc.subjectBINDING FREE-ENERGYen
dc.subjectALPHA-D-GLUCOSEen
dc.subjectWATER-MOLECULESen
dc.subjectT-STATEen
dc.subjectPHARMACOLOGICAL INHIBITIONen
dc.subjectCATALYTIC SITEen
dc.subjectBiochemistry & Molecular Biologyen
dc.subjectChemistry, Medicinalen
dc.title3 '-Axial CH2OH Substitution on Glucopyranose does not Increase Glycogen Phosphorylase Inhibitory Potency. QM/MM-PBSA Calculations Suggest Whyen
dc.typejournalArticleen


Fichier(s) constituant ce document

FichiersTailleFormatVue

Il n'y a pas de fichiers associés à ce document.

Ce document figure dans la(les) collection(s) suivante(s)

Afficher la notice abrégée