Logo
    • English
    • Ελληνικά
    • Deutsch
    • français
    • italiano
    • español
  • English 
    • English
    • Ελληνικά
    • Deutsch
    • français
    • italiano
    • español
  • Login
View Item 
  •   University of Thessaly Institutional Repository
  • Επιστημονικές Δημοσιεύσεις Μελών ΠΘ (ΕΔΠΘ)
  • Δημοσιεύσεις σε περιοδικά, συνέδρια, κεφάλαια βιβλίων κλπ.
  • View Item
  •   University of Thessaly Institutional Repository
  • Επιστημονικές Δημοσιεύσεις Μελών ΠΘ (ΕΔΠΘ)
  • Δημοσιεύσεις σε περιοδικά, συνέδρια, κεφάλαια βιβλίων κλπ.
  • View Item
JavaScript is disabled for your browser. Some features of this site may not work without it.
Institutional repository
All of DSpace
  • Communities & Collections
  • By Issue Date
  • Authors
  • Titles
  • Subjects

Superhydrophobic composite films produced on various substrates

Thumbnail
Author
Manoudis, P. N.; Karapanagiotis, I.; Tsakalof, A.; Zuburtikudis, I.; Panayiotou, C.
Date
2008
DOI
10.1021/la801817e
Keyword
SUPER-HYDROPHOBIC SURFACES
ARTIFICIAL LOTUS LEAF
WATER-REPELLENT
SILICA NANOPARTICLES
WETTABILITY
COATINGS
THETA(A)/THETA(R)=180-DEGREES/180-DEGREES
TOPOGRAPHY
Chemistry, Multidisciplinary
Chemistry, Physical
Materials Science,
Multidisciplinary
Metadata display
Abstract
Hydrophilic silica NOD nanoparticles were dispersed in solutions of poly(methyl methacrylate) (PMMA) and in solutions of a commercial poly(alkyl siloxane) (Rhodorsil 224), and the suspensions were sprayed on glass surfaces. The effect of the particle concentration on the hydrophobic character of PMMA-SiO2 and Rhodorsil-SiO2 films was investigated and showed the following: (i) Static contact angles (theta(s)), measured on surfaces that were prepared from dilute dispersions (particle concentration < 1 % w/v), increase rapidly with particle concentration and reach maximum values (154 and 164 degrees for PMMA-SiO2 and siloxane-SiO2, respectively). Further increases in particle concentration do not have any effect on theta(s). (ii) The effect of particle concentration on the contact angle hysteresis (theta(A) - theta(R)) is more complicated: as the particle concentration increases, we first notice an increase in hysteresis, which then decreases and finally becomes constant at elevated particle concentrations. The lowest theta(A) - theta(R) values were 5 degrees for PMMA-SiO2 and 3 degrees for siloxane-SiO2, respectively. (iii) SEM and AFM images show that a two-length-scale hierarchical structure is formed on the surface of the superhydrophobic films. It is demonstrated that superhydrophobicity can be achieved using various hydrophilic nanoparticles (alumina and tin oxide nanoparticles were successfully tested) and that the substrate has almost no effect on the hydrophobic character of the applied coatings, which were produced on silicon, concrete, aluminum, silk, wood, marble, and of course glass. The results are discussed in light of Wenzel and Cassie-Baxter models.
URI
http://hdl.handle.net/11615/30656
Collections
  • Δημοσιεύσεις σε περιοδικά, συνέδρια, κεφάλαια βιβλίων κλπ. [19705]
htmlmap 

 

Browse

All of DSpaceCommunities & CollectionsBy Issue DateAuthorsTitlesSubjectsThis CollectionBy Issue DateAuthorsTitlesSubjects

My Account

LoginRegister (MyDspace)
Help Contact
DepositionAboutHelpContact Us
Choose LanguageAll of DSpace
EnglishΕλληνικά
htmlmap