Εμφάνιση απλής εγγραφής

dc.creatorLiang, Y.en
dc.creatorSofronis, P.en
dc.creatorDodds Jr, R. H.en
dc.creatorAravas, N.en
dc.date.accessioned2015-11-23T10:37:55Z
dc.date.available2015-11-23T10:37:55Z
dc.date.issued2005
dc.identifier.isbn9781617820632
dc.identifier.urihttp://hdl.handle.net/11615/30320
dc.description.abstractOf the many suggestions of hydrogen-induced degradation of engineering materials, two mechanisms appear to be viable in non-hydride forming systems: hydrogen-enhanced localized plasticity (HELP) and hydrogeninduced decohesion. The present work attempts to link the experimentally observed hydrogen-enhanced dislocation mobility and lattice dilatation to shear localization and ductile rupture processes at the macroscale in the presence of hydrogen. Plasticity models accounting for the hydrogen effects at the microscale are used to study the conditions under which hydrogen induces shear banding in a specimen under plane-strain tension. It is demonstrated that hydrogen induces loss of ellipticity in the governing rate equations of the macroscopic material deformation. Studies on the crack-front constraint variations indicate that the resistance to ductile fracture of low and high constraint configurations depends on the initial hydrogen concentration and the associated amount of softening. On the basis of the Rice and Tracey model for void growth, it is demonstrated that the fracture process ahead of a crack tip in the presence of hydrogen is strongly controlled by the plastic strain in agreement with the HELP mechanism for embrittlement. In contrast, one of the earliest and most often cited theories of hydrogen embrittlement is the decohesion theory, which is based on the postulate that solute hydrogen decreases the force required to separate the crystal along a crystallographic plane, grain boundary or a particle/matrix interface. Decohesion along grain boundary carbides is believed to be a form of hydrogen-induced degradation, also observed experimentally in Ni-base alloy 690. A coupled model of transient hydrogen transport through a plastically deforming matrix with elastic precipitates and debonding particle/matrix interfaces is presented. The numerical results indicate that hydrogen reduces both the macroscopic stress and strain for internal void nucleation.en
dc.source.urihttp://www.scopus.com/inward/record.url?eid=2-s2.0-84869790666&partnerID=40&md5=e0cbf45f005d8ea3312031e5fd9c3bf0
dc.subjectCoupled modelsen
dc.subjectCrystallographic planeen
dc.subjectDe-cohesionen
dc.subjectDislocation mobilityen
dc.subjectDuctile ruptureen
dc.subjectEmbrittlement mechanismsen
dc.subjectEngineering materialsen
dc.subjectForming systemsen
dc.subjectFracture processen
dc.subjectGrain boundary carbidesen
dc.subjectHydrogen concentrationen
dc.subjectHydrogen effecten
dc.subjectHydrogen transporten
dc.subjectHydrogen-enhanced localized plasticitiesen
dc.subjectHydrogen-induced degradationen
dc.subjectInternal voidsen
dc.subjectLoss of ellipticityen
dc.subjectMacro scaleen
dc.subjectMacroscopic materialsen
dc.subjectMacroscopic stressen
dc.subjectMechanics modelsen
dc.subjectMicro-scalesen
dc.subjectNi-base alloysen
dc.subjectNumerical resultsen
dc.subjectParticle/matrix interfaceen
dc.subjectPlane-strainen
dc.subjectPlasticity modelen
dc.subjectRate equationsen
dc.subjectShear bandingen
dc.subjectShear localizationsen
dc.subjectVoid growthen
dc.subjectCarbidesen
dc.subjectCrack tipsen
dc.subjectDeformationen
dc.subjectDislocations (crystals)en
dc.subjectDuctile fractureen
dc.subjectGrain boundariesen
dc.subjectHydrogenen
dc.subjectShear flowen
dc.subjectSingle crystalsen
dc.subjectHydrogen embrittlementen
dc.titleMechanics models for hydrogen embrittlement mechanismsen
dc.typeconferenceItemen


Αρχεία σε αυτό το τεκμήριο

ΑρχείαΜέγεθοςΤύποςΠροβολή

Δεν υπάρχουν αρχεία που να σχετίζονται με αυτό το τεκμήριο.

Αυτό το τεκμήριο εμφανίζεται στις ακόλουθες συλλογές

Εμφάνιση απλής εγγραφής