Εμφάνιση απλής εγγραφής

dc.creatorKoutsopoulos, I.en
dc.creatorTassiulas, L.en
dc.date.accessioned2015-11-23T10:36:51Z
dc.date.available2015-11-23T10:36:51Z
dc.date.issued2013
dc.identifier10.1016/j.adhoc.2011.07.004
dc.identifier.issn1570-8705
dc.identifier.urihttp://hdl.handle.net/11615/29985
dc.description.abstractWe study the problem of fast neighbor positioning and medium access in wireless networks with directional antennas. In this problem, the cross-layer dimension inherently comes into stage through the impact of PHY-layer antenna directionality on medium access. Fast neighbor positioning reduces the network initialization overhead and leaves more time for executing other protocols. Fast medium access leads to larger volume of transmitted data per unit of time. The two problems are studied in a unified manner in a system with one Access Point (AP) and multiple users around it. The AP sequentially scans the space by forming directional beams and applies contention-free or contention-based user polling within each beam. In the former method, polling messages are addressed to a specific user. In the latter, users in a beam contend to have their message received by the AP. We explore the impact of the contention resolution protocol and the directional beam width on user positioning and medium access delay. A large beam width incurs large expected delay for contention resolution due to the larger expected amount of contention in the beam, but on the other hand, it implies that fewer beams, and hence smaller delay is needed to scan the entire space. We obtain analytic expressions for the total average user positioning and the medium access delay, and we present an optimization method for minimizing it by appropriately selecting the beam width and the persistence probability of the collision resolution protocol. Our method uses accumulated knowledge from previous scans to estimate the anticipated amount of contention in upcoming scans and to adjust the beam width and persistence probability accordingly. Our numerical results demonstrate the efficiency of our techniques in terms of fast neighbor positioning. (C) 2011 Elsevier B.V. All rights reserved.en
dc.source.uri<Go to ISI>://WOS:000313860800002
dc.subjectAntenna arraysen
dc.subjectLocalizationen
dc.subjectPositioningen
dc.subjectMedium accessen
dc.subjectComputer Science, Information Systemsen
dc.subjectTelecommunicationsen
dc.titleFast neighbor positioning and medium access in wireless networks with directional antennasen
dc.typejournalArticleen


Αρχεία σε αυτό το τεκμήριο

ΑρχείαΜέγεθοςΤύποςΠροβολή

Δεν υπάρχουν αρχεία που να σχετίζονται με αυτό το τεκμήριο.

Αυτό το τεκμήριο εμφανίζεται στις ακόλουθες συλλογές

Εμφάνιση απλής εγγραφής