• English
    • Ελληνικά
    • Deutsch
    • français
    • italiano
    • español
  • English 
    • English
    • Ελληνικά
    • Deutsch
    • français
    • italiano
    • español
  • Login
View Item 
  •   University of Thessaly Institutional Repository
  • Επιστημονικές Δημοσιεύσεις Μελών ΠΘ (ΕΔΠΘ)
  • Δημοσιεύσεις σε περιοδικά, συνέδρια, κεφάλαια βιβλίων κλπ.
  • View Item
  •   University of Thessaly Institutional Repository
  • Επιστημονικές Δημοσιεύσεις Μελών ΠΘ (ΕΔΠΘ)
  • Δημοσιεύσεις σε περιοδικά, συνέδρια, κεφάλαια βιβλίων κλπ.
  • View Item
JavaScript is disabled for your browser. Some features of this site may not work without it.
All of DSpace
  • Communities & Collections
  • By Issue Date
  • Authors
  • Titles
  • Subjects

Clindamycin binding to ribosomes revisited: foot printing and computational detection of two binding sites within the peptidyl transferase center

Thumbnail
Author
Kostopoulou, O. N.; Papadopoulos, G.; Kouvela, E. C.; Kalpaxis, D. L.
Date
2013
DOI
10.1691/ph.2013.6508
Keyword
ESCHERICHIA-COLI
BOND FORMATION
TRANSFER-RNA
ANTIBIOTIC INHIBITORS
STRUCTURAL BASIS
RESISTANCE
LINCOMYCIN
SUBSTRATE
STREPTOGRAMIN
LINCOSAMIDES
Chemistry, Medicinal
Chemistry, Multidisciplinary
Pharmacology &
Pharmacy
Metadata display
Abstract
Clindamycin is a semi-synthetic lincosamide, active against most Gram-positive bacteria and some protozoa. It binds to the 50S ribosomal subunit and inhibits early peptide chain elongation. By kinetic analysis it has been shown that clindamycin (I) competitively interacts with the A-site of translating ribosomes (C) to form the encounter complex Cl, which then slowly isomerizes to a tighter complex, termed C*I. As the final complex is capable of synthesizing peptide bonds with decreased velocity, it was assumed that in C*I complex the drug is fixed near the P-site of the ribosome. In the present study, two series of chemical foot printing experiments were carried out. In the first series, clindamycin and ribosomal complex C were incubated for 1 s and then DMS or kethoxal was added (Cl probing). In the second series, complex C was preincubated with clindamycin for 1 min before the addition of DMS or kethoxal (C*I probing). It was found that clindamycin in Cl complex protects A2451 and A2602 from chemical probing, both located within the A-site of the catalytic center. In contrast, it strongly protects G2505 in C*I complex, which is a discrete foot print of peptidyl-tRNA bound to the P-site. In both Cl and C*I complexes, clindamycin also protects nucleotides A2058 and A2059, located next to the entrance of the exit-tunnel where the nascent peptide leaves the ribosome. Polyamines negatively affect the protection of G2505, but favor the protection of A2451 and A2602 nucleotides. Structure modeling confirms the kinetic and chemical foot printing results and suggests that clindamycin mode of action is more complex than a simple competitive inhibition of peptide bond formation.
URI
http://hdl.handle.net/11615/29701
Collections
  • Δημοσιεύσεις σε περιοδικά, συνέδρια, κεφάλαια βιβλίων κλπ. [19672]
Η δικτυακή πύλη της Ευρωπαϊκής Ένωσης
Ψηφιακή Ελλάδα
ΕΣΠΑ 2007-2013
 

 

Browse

All of DSpaceCommunities & CollectionsBy Issue DateAuthorsTitlesSubjectsThis CollectionBy Issue DateAuthorsTitlesSubjects

My Account

LoginRegister (MyDspace)
Help Contact
DepositionAboutHelpContact Us
Choose LanguageAll of DSpace
EnglishΕλληνικά
Η δικτυακή πύλη της Ευρωπαϊκής Ένωσης
Ψηφιακή Ελλάδα
ΕΣΠΑ 2007-2013