Logo
    • English
    • Ελληνικά
    • Deutsch
    • français
    • italiano
    • español
  • Ελληνικά 
    • English
    • Ελληνικά
    • Deutsch
    • français
    • italiano
    • español
  • Σύνδεση
Προβολή τεκμηρίου 
  •   Ιδρυματικό Αποθετήριο Πανεπιστημίου Θεσσαλίας
  • Επιστημονικές Δημοσιεύσεις Μελών ΠΘ (ΕΔΠΘ)
  • Δημοσιεύσεις σε περιοδικά, συνέδρια, κεφάλαια βιβλίων κλπ.
  • Προβολή τεκμηρίου
  •   Ιδρυματικό Αποθετήριο Πανεπιστημίου Θεσσαλίας
  • Επιστημονικές Δημοσιεύσεις Μελών ΠΘ (ΕΔΠΘ)
  • Δημοσιεύσεις σε περιοδικά, συνέδρια, κεφάλαια βιβλίων κλπ.
  • Προβολή τεκμηρίου
JavaScript is disabled for your browser. Some features of this site may not work without it.
Ιδρυματικό Αποθετήριο Πανεπιστημίου Θεσσαλίας
Όλο το DSpace
  • Κοινότητες & Συλλογές
  • Ανά ημερομηνία δημοσίευσης
  • Συγγραφείς
  • Τίτλοι
  • Λέξεις κλειδιά

Online clustering of distributed streaming data using belief propagation techniques

Thumbnail
Συγγραφέας
Halkidi, M.; Koutsopoulos, I.
Ημερομηνία
2011
DOI
10.1109/MDM.2011.63
Λέξη-κλειδί
Belief propagation
Clustering approach
Clustering procedure
Clustering quality
Communication constraints
Data evolution
Data synopsis
Decision makers
Distributed nodes
Distributed streaming
Global clustering
Online-clustering
Second level
Streaming data
Time slots
Decision making
Information management
Data handling
Εμφάνιση Μεταδεδομένων
Επιτομή
Extraction of patterns out of streaming data that are generated from geographically dispersed devices is a major challenge in data mining. The sequential, distributed fashion in which data become available to the decision maker, together with the fact that the decision maker needs to rely only on recently received data due to storage and communication constraints, render the objective of keeping track of data evolution a nontrivial one. We consider a set of distributed nodes that communicate directly with a central location. We address the problem of clustering distributed streaming data through a two-level clustering approach. We adopt belief propagation techniques to perform stream clustering at both levels. At the node level, a batch of data arrives at each time slot, and the goal is to maintain a set of salient data (local exemplars) at each time slot, which best represents the data received up to that slot. At each epoch, the local exemplars from distributed nodes are sent to the central location, which in turn performs a second-level clustering on them to derive a data synopsis global for the whole system. The local exemplars that emerge from the second level clustering procedure are fed back to the nodes with appropriately modified weights which reflect their importance in global clustering. As demonstrated by our experiments, the two-level belief propagation-based clustering approach together with the feedback is ideal for handling data from different nodes, as it has the same performance in terms of clustering quality with the case where the clustering is performed on the raw data sent from nodes to the central location. © 2011 IEEE.
URI
http://hdl.handle.net/11615/28323
Collections
  • Δημοσιεύσεις σε περιοδικά, συνέδρια, κεφάλαια βιβλίων κλπ. [19674]

Related items

Showing items related by title, author, creator and subject.

  • Thumbnail

    A Scalable Short-Text Clustering Algorithm Using Apache Spark 

    Akritidis L., Alamaniotis M., Fevgas A., Bozanis P. (2021)
    Short text clustering deals with the problem of grouping together semantically similar documents with small lengths. Nowadays, huge amounts of text data is being generated by numerous applications such as microblogs, ...
  • Thumbnail

    Distributed clustering in vehicular networks 

    Maglaras, L. A.; Katsaros, D. (2012)
    Clustering in vanets is of crucial importance in order to cope with the dynamic features of the vehicular topologies. Algorithms that give good results in Manets fail to create stable clusters since vehicular nodes are ...
  • Thumbnail

    Improving Hierarchical Short Text Clustering through Dominant Feature Learning 

    Akritidis L., Alamaniotis M., Fevgas A., Tsompanopoulou P., Bozanis P. (2022)
    This paper focuses on the popular problem of short text clustering. Since the short text documents typically exhibit high degrees of data sparseness and dimensionality, the problem in question is generally considered more ...
Η δικτυακή πύλη της Ευρωπαϊκής Ένωσης
Ψηφιακή Ελλάδα
ΕΣΠΑ 2007-2013
Με τη συγχρηματοδότηση της Ελλάδας και της Ευρωπαϊκής Ένωσης
htmlmap 

 

Πλοήγηση

Όλο το DSpaceΚοινότητες & ΣυλλογέςΑνά ημερομηνία δημοσίευσηςΣυγγραφείςΤίτλοιΛέξεις κλειδιάΑυτή η συλλογήΑνά ημερομηνία δημοσίευσηςΣυγγραφείςΤίτλοιΛέξεις κλειδιά

Ο λογαριασμός μου

ΣύνδεσηΕγγραφή (MyDSpace)
Πληροφορίες-Επικοινωνία
ΑπόθεσηΣχετικά μεΒοήθειαΕπικοινωνήστε μαζί μας
Επιλογή ΓλώσσαςΌλο το DSpace
EnglishΕλληνικά
Η δικτυακή πύλη της Ευρωπαϊκής Ένωσης
Ψηφιακή Ελλάδα
ΕΣΠΑ 2007-2013
Με τη συγχρηματοδότηση της Ελλάδας και της Ευρωπαϊκής Ένωσης
htmlmap