• English
    • Ελληνικά
    • Deutsch
    • français
    • italiano
    • español
  • English 
    • English
    • Ελληνικά
    • Deutsch
    • français
    • italiano
    • español
  • Login
View Item 
  •   University of Thessaly Institutional Repository
  • Επιστημονικές Δημοσιεύσεις Μελών ΠΘ (ΕΔΠΘ)
  • Δημοσιεύσεις σε περιοδικά, συνέδρια, κεφάλαια βιβλίων κλπ.
  • View Item
  •   University of Thessaly Institutional Repository
  • Επιστημονικές Δημοσιεύσεις Μελών ΠΘ (ΕΔΠΘ)
  • Δημοσιεύσεις σε περιοδικά, συνέδρια, κεφάλαια βιβλίων κλπ.
  • View Item
JavaScript is disabled for your browser. Some features of this site may not work without it.
All of DSpace
  • Communities & Collections
  • By Issue Date
  • Authors
  • Titles
  • Subjects

Yield prediction in apple orchards based on image processing

Thumbnail
Author
Aggelopoulou, A. D.; Bochtis, D.; Fountas, S.; Swain, K. C.; Gemtos, T. A.; Nanos, G. D.
Date
2011
DOI
10.1007/s11119-010-9187-0
Keyword
Flower map
Yield map
Site-specific management
Image processing
DIGITAL CAMERA
Agriculture, Multidisciplinary
Metadata display
Abstract
It has been suggested that apple ( Malus * domestica Borkh) flowering distribution maps can be used for site-specific management decisions. The objectives of this study were (i) to study the flower density variability in an apple orchard using image analysis and (ii) to model the correlation between flower density as determined from image analysis and fruit yield. The research was carried out in a commercial apple orchard in Central Greece. In April 2007, when the trees were at full bloom, photos of the trees were taken following a systematic uniform random sampling procedure. In September 2007, yield mapping was carried out measuring yield per ten trees and recording the position of the centre of the ten trees. Using this data (the measured yield of the trees and the pictures samples, representing the flower distribution), an image processing-based algorithm was developed that predicts tree yield by analyzing the picture of the tree at full bloom. For the evaluation of the algorithm, a case study scenario is presented where the error of the predicted yield was set at 18%. These results indicated that potential yield could be predicted early in the season from flowering distribution maps and could be used for orchard management during the growing season.
URI
http://hdl.handle.net/11615/25373
Collections
  • Δημοσιεύσεις σε περιοδικά, συνέδρια, κεφάλαια βιβλίων κλπ. [9728]
Η δικτυακή πύλη της Ευρωπαϊκής Ένωσης
Ψηφιακή Ελλάδα
ΕΣΠΑ 2007-2013
 

 

Browse

All of DSpaceCommunities & CollectionsBy Issue DateAuthorsTitlesSubjectsThis CollectionBy Issue DateAuthorsTitlesSubjects

My Account

LoginRegister (MyDspace)
Help Contact
DepositionAboutHelpContact Us
Choose LanguageAll of DSpace
EnglishΕλληνικά
Η δικτυακή πύλη της Ευρωπαϊκής Ένωσης
Ψηφιακή Ελλάδα
ΕΣΠΑ 2007-2013