Quantification of aleatory uncertainty in modal updating problems using a new hierarchical Bayesian framework
Date
2019Language
en
Sujet
Résumé
Identification of structural damage requires reliable assessments of damage-sensitive quantities, including natural frequencies, mode shapes, and damping ratios. Lack of knowledge about the correct value of these parameters introduces a particular sort of uncertainty often referred to as epistemic uncertainty. This class of uncertainty is reducible in a sense that it can be decreased by enhancing the modeling accuracy and collecting new information. On the contrary, such damage-sensitive parameters might also have intrinsic randomness arising from unknown phenomena and effects, which gives rise to an irreducible category of uncertainty often referred to as aleatory uncertainty. The present Bayesian modal updating methodologies can produce reasonable quantification of the epistemic uncertainties, while they often fail to account for the aleatory uncertainties. In this paper, a new multilevel (hierarchical) probabilistic modeling framework is proposed to bridge this significant gap in uncertainty quantification and propagation of structural dynamics inverse problems. Since multilevel model calibration schemes establish a complicated model structure associated with additional parameters and variables, their computational costs are often considerable, if not prohibitive. To reduce the computational costs, the modal updating procedure is simplified using a second-order Taylor expansion approximation. This approximation is combined with a Markov chain Monte-Carlo (MCMC) sampling method to compute marginal posterior distributions of quantities of interest. The proposed framework is illustrated using one simple experimental example. As a result, it is demonstrated that the proposed framework surpasses the present Bayesian modal updating methods as it accounts for both the aleatory and epistemic uncertainties. © 13th International Conference on Applications of Statistics and Probability in Civil Engineering, ICASP 2019. All rights reserved.
Collections
Related items
Showing items related by title, author, creator and subject.
-
A unified sampling-based framework for optimal sensor placement considering parameter and prediction inference
Argyris C., Papadimitriou C., Samaey G., Lombaert G. (2021)We present a Bayesian framework for model-based optimal sensor placement. Our interest lies in minimizing the uncertainty on predictions of a particular response quantity of interest, with parameter estimation being an ... -
Nonlinear model updating through a hierarchical Bayesian modeling framework
Jia X., Sedehi O., Papadimitriou C., Katafygiotis L.S., Moaveni B. (2022)A new time-domain probabilistic technique based on hierarchical Bayesian modeling (HBM) framework is proposed for calibration and uncertainty quantification of hysteretic type nonlinearities of dynamical systems. Specifically, ... -
Hierarchical Bayesian Model Updating for Nonlinear Structures Using Response Time Histories
Jia X., Sedehi O., Katafygiotis L.S., Moaveni B., Papadimitriou C. (2022)This paper presents a novel hierarchical Bayesian modeling (HBM) framework for the model updating and response predictions of dynamic systems with material nonlinearity using multiple data sets consisting of measured ...