Mostrar el registro sencillo del ítem

dc.creatorPapadioti I., Aravas N., Lian J., Münstermann S.en
dc.date.accessioned2023-01-31T09:42:29Z
dc.date.available2023-01-31T09:42:29Z
dc.date.issued2019
dc.identifier10.1016/j.ijsolstr.2019.05.027
dc.identifier.issn00207683
dc.identifier.urihttp://hdl.handle.net/11615/77603
dc.description.abstractA “plastic-strain-gradient” version of an isotropic elastoplastic damage model that depends on the third invariant J3 of the stress deviator is developed. The model is based on the “non-local” equivalent plastic strain ep defined by Peerlings et al. (2001) and Engelen et al. (2003) and introduces a “material length” ℓ to the constitutive equations. It is shown that the non-local equivalent plastic strain ep at a material point P can be identified with the average value of the local von Mises equivalent plastic strain ε¯p over a sphere centered at P and of radius approximately equal to 3 ℓ. A methodology for the numerical integration of the constitutive equations is presented. The algorithm is appropriate for rate-independent as well as rate-dependent (viscoplastic) models. The model is implemented in the ABAQUS general-purpose finite element program and both quasi-static and dynamic problems are solved. Two possible ABAQUS implementations are discussed. First,“user elements” are developed, which can be used for the solution of both quasi-static and dynamic problems. Reduced 1-point Gauss integration is discussed in 8-node hexahedral elements and the “physical stabilization” method of Puso (2000) is used to remove the resulting numerical singularities (hourglass control). Second, the implementation of the model via “user material” subroutines is discussed. Quasi-static problems can be solved with ABAQUS/Standard using a *COUPLED TEMPERATURE-DISPLACEMENT, STEADY STATE analysis together with user subroutine UMAT, in which temperature is identified with the non-local equivalent plastic strain ep; the solution of dynamic problems requires use of ABAQUS/Explicit together with a *DYNAMIC TEMPERATURE-DISPLACEMENT analysis option and user subroutines VUMAT and DFLUX. Several example problems are solved. © 2019 Elsevier Ltden
dc.language.isoenen
dc.sourceInternational Journal of Solids and Structuresen
dc.source.urihttps://www.scopus.com/inward/record.uri?eid=2-s2.0-85066798209&doi=10.1016%2fj.ijsolstr.2019.05.027&partnerID=40&md5=59100138f981c5431b52dd6851f5dd01
dc.subjectABAQUSen
dc.subjectConstitutive equationsen
dc.subjectDynamicsen
dc.subjectElastoplasticityen
dc.subjectFinite element methoden
dc.subjectIntegral equationsen
dc.subjectIntegrationen
dc.subjectPlastic deformationen
dc.subjectPlasticityen
dc.subjectDamage mechanicsen
dc.subjectElasto-plasticen
dc.subjectHourglass controlen
dc.subjectJ3 dependenceen
dc.subjectStrain-gradient plasticityen
dc.subjectNumerical methodsen
dc.subjectElsevier Ltden
dc.titleA strain-gradient isotropic elastoplastic damage model with J3 dependenceen
dc.typejournalArticleen


Ficheros en el ítem

FicherosTamañoFormatoVer

No hay ficheros asociados a este ítem.

Este ítem aparece en la(s) siguiente(s) colección(ones)

Mostrar el registro sencillo del ítem