Show simple item record

dc.creatorLong B., Yang H., Li M., Balogun M.-S., Mai W., Ouyang G., Tong Y., Tsiakaras P., Song S.en
dc.date.accessioned2023-01-31T08:55:24Z
dc.date.available2023-01-31T08:55:24Z
dc.date.issued2019
dc.identifier10.1016/j.apcatb.2018.10.039
dc.identifier.issn09263373
dc.identifier.urihttp://hdl.handle.net/11615/75995
dc.description.abstractSemiconducting materials are considered as excellent electrocatalysts for electrochemical water splitting; however, there is still a lack of relevant design and understanding of semiconducting composite electrodes. Here, a monolithic electrode composed of etched copper foam and p-n heterojunction (p-type Cu2O layer and n-type TiO2 nanodots with excellent hydrophilicity) is successfully prepared. This can reduce the electron transfer resistance, optimize water and H adsorption on catalyst surface and generate a space-charge region in phase interface, enhancing the local electrons density of Cu2O, which is proved by experimental results and density functional theory (DFT). Owing to the whole accelerated Volmer-Heyrovsky pathway, the as-prepared heterojunction electrode exhibits low onset potential (18 mV), high electrocatalytic activity (a potential of 114 mV at 10 mA cm−2) and long-term stability for hydrogen evolution reaction in alkaline media that is comparable to that of Pt, enabling the large scale fabrication. © 2018 Elsevier B.V.en
dc.language.isoenen
dc.sourceApplied Catalysis B: Environmentalen
dc.source.urihttps://www.scopus.com/inward/record.uri?eid=2-s2.0-85055731616&doi=10.1016%2fj.apcatb.2018.10.039&partnerID=40&md5=2a2f6042ee152aae09fbe4c9ddca1849
dc.subjectCopperen
dc.subjectCopper oxidesen
dc.subjectDensity functional theoryen
dc.subjectDesign for testabilityen
dc.subjectElectrocatalystsen
dc.subjectHeterojunctionsen
dc.subjectHydrogenen
dc.subjectHydrogen evolution reactionen
dc.subjectNanodotsen
dc.subjectOxide mineralsen
dc.subjectPhase interfacesen
dc.subjectTitanium dioxideen
dc.subjectElectrocatalytic activityen
dc.subjectElectron-transfer resistanceen
dc.subjectInterface chargeen
dc.subjectLarge scale preparationen
dc.subjectLarge-scale fabricationen
dc.subjectP-n heterojunctionsen
dc.subjectSemiconducting materialsen
dc.subjectSpace charge regionsen
dc.subjectElectrochemical electrodesen
dc.subjectElsevier B.V.en
dc.titleInterface charges redistribution enhanced monolithic etched copper foam-based Cu2O layer/TiO2 nanodots heterojunction with high hydrogen evolution electrocatalytic activityen
dc.typejournalArticleen


Files in this item

FilesSizeFormatView

There are no files associated with this item.

This item appears in the following Collection(s)

Show simple item record