Εμφάνιση απλής εγγραφής

dc.creatorChatzimanolakis M., Weber P., Arampatzis G., Wälchli D., Kičić I., Karnakov P., Papadimitriou C., Koumoutsakos P.en
dc.date.accessioned2023-01-31T07:44:08Z
dc.date.available2023-01-31T07:44:08Z
dc.date.issued2020
dc.identifier10.4414/smw.2020.20445
dc.identifier.issn14247860
dc.identifier.urihttp://hdl.handle.net/11615/72658
dc.description.abstractThe systematic identification of infected individuals is critical for the containment of the COVID-19 pandemic. Currently, the spread of the disease is mostly quantified by the reported numbers of infections, hospitalisations, recoveries and deaths; these quantities inform epidemiology models that provide forecasts for the spread of the epidemic and guide policy making. The veracity of these forecasts depends on the discrepancy between the numbers of reported, and unreported yet infectious, individuals. We combine Bayesian experimental design with an epidemiology model and propose a methodology for the optimal allocation of limited testing resources in space and time, which maximises the information gain for such unreported infections. The proposed approach is applicable at the onset and spread of the epidemic and can forewarn of a possible recurrence of the disease after relaxation of interventions. We examine its application in Switzerland; the open source software is, however, readily adaptable to countries around the world. We find that following the proposed methodology can lead to vastly less uncertain predictions for the spread of the disease, thus improving estimates of the effective reproduction number and the future number of unreported infections. This information can provide timely and systematic guidance for the effective identification of infectious individuals and for decision-making regarding lockdown measures and the distribution of vaccines. © 2020 EMH Swiss Medical Publishers Ltd.. All rights reserved.en
dc.language.isoenen
dc.sourceSwiss Medical Weeklyen
dc.source.urihttps://www.scopus.com/inward/record.uri?eid=2-s2.0-85098607959&doi=10.4414%2fsmw.2020.20445&partnerID=40&md5=08429e86a10752e95910118f38bb7b04
dc.subjectArticleen
dc.subjectBayesian optimal experimental designen
dc.subjectcoronavirus disease 2019en
dc.subjectdecision makingen
dc.subjecteffective reproduction numberen
dc.subjectexperimental designen
dc.subjectpandemicen
dc.subjectpredictionen
dc.subjectrecurrent infectionen
dc.subjectresource allocationen
dc.subjectSwitzerlanden
dc.subjectuncertaintyen
dc.subjectvirus transmissionen
dc.subjectBayes theoremen
dc.subjectcommunicable disease controlen
dc.subjectdiagnosisen
dc.subjectepidemiological monitoringen
dc.subjectepidemiologyen
dc.subjectforecastingen
dc.subjecthealth care policyen
dc.subjecthumanen
dc.subjectprevention and controlen
dc.subjectpreventive health serviceen
dc.subjectproceduresen
dc.subjectrandomizationen
dc.subjectresource allocationen
dc.subjectBayes Theoremen
dc.subjectCommunicable Disease Controlen
dc.subjectCOVID-19en
dc.subjectCOVID-19 Testingen
dc.subjectDiagnostic Servicesen
dc.subjectEpidemiological Monitoringen
dc.subjectForecastingen
dc.subjectHealth Policyen
dc.subjectHumansen
dc.subjectRandom Allocationen
dc.subjectResource Allocationen
dc.subjectSARS-CoV-2en
dc.subjectSwitzerlanden
dc.subjectEMH Schweizerischer Arzteverlag AGen
dc.titleOptimal allocation of limited test resources for the quantification of COVID-19 infectionsen
dc.typejournalArticleen


Αρχεία σε αυτό το τεκμήριο

ΑρχείαΜέγεθοςΤύποςΠροβολή

Δεν υπάρχουν αρχεία που να σχετίζονται με αυτό το τεκμήριο.

Αυτό το τεκμήριο εμφανίζεται στις ακόλουθες συλλογές

Εμφάνιση απλής εγγραφής