Εμφάνιση απλής εγγραφής

dc.creatorChatziioannou K., Karamanos S.A., Huang Y.en
dc.date.accessioned2023-01-31T07:43:54Z
dc.date.available2023-01-31T07:43:54Z
dc.date.issued2021
dc.identifier10.1016/j.engstruct.2020.111536
dc.identifier.issn01410296
dc.identifier.urihttp://hdl.handle.net/11615/72625
dc.description.abstractA coupled cyclic plasticity-damage model is implemented for simulating low-cycle fatigue in metal components. Constitutive relations account for J2-flow theory with nonlinear kinematic/isotropic hardening, coupled with isotropic continuum damage mechanics. The damage potential is written in a general form, allowing for implementing different damage models. An implicit numerical integration scheme is developed and the incremental update of the internal variables is achieved through the solution of a single scalar equation. Consistent linearisation of the integration algorithm is provided explicitly to guarantee robustness of the proposed algorithm. The algorithm is implemented in a user subroutine and is inserted into a commercial finite element software. Its accuracy and computational efficiency are demonstrated through numerical simulation of large-scale experiments on metal piping components that failed under low-cycle fatigue loading. The numerical analyses are conducted using finite element models of different mesh density, implementing an appropriate simulation methodology. A simple and efficient damage evolution function is employed, regularised with respect to the element's size, so that the numerical results present negligible mesh dependency. Excellent comparison is observed between experimental and numerical results in terms of global structural response, local strains and the number of cycles for developing through-thickness crack, indicating that the present formulation can be used as an efficient numerical tool for simulating inelastic damage and low-cycle fatigue in large-scale metal structural components. © 2020 Elsevier Ltden
dc.language.isoenen
dc.sourceEngineering Structuresen
dc.source.urihttps://www.scopus.com/inward/record.uri?eid=2-s2.0-85097708760&doi=10.1016%2fj.engstruct.2020.111536&partnerID=40&md5=5f376818c23851cb8528d30334219080
dc.subjectComputation theoryen
dc.subjectComputational efficiencyen
dc.subjectContinuum damage mechanicsen
dc.subjectFinite element methoden
dc.subjectMesh generationen
dc.subjectMetalsen
dc.subjectNumerical methodsen
dc.subjectNumerical modelsen
dc.subjectSubroutinesen
dc.subjectConstitutive relationsen
dc.subjectCoupled numerical simulationen
dc.subjectFinite element softwareen
dc.subjectImplicit numerical integrationen
dc.subjectLarge scale experimentsen
dc.subjectLow-cycle fatigue loadingen
dc.subjectSimulation methodologyen
dc.subjectThrough-thickness cracksen
dc.subjectFatigue damageen
dc.subjectaccuracy assessmenten
dc.subjectalgorithmen
dc.subjectcomputer simulationen
dc.subjectcyclic loadingen
dc.subjectfinite element methoden
dc.subjectnumerical modelen
dc.subjectstructural analysisen
dc.subjectstructural responseen
dc.subjectElsevier Ltden
dc.titleCoupled numerical simulation of low-cycle fatigue damage in metal componentsen
dc.typejournalArticleen


Αρχεία σε αυτό το τεκμήριο

ΑρχείαΜέγεθοςΤύποςΠροβολή

Δεν υπάρχουν αρχεία που να σχετίζονται με αυτό το τεκμήριο.

Αυτό το τεκμήριο εμφανίζεται στις ακόλουθες συλλογές

Εμφάνιση απλής εγγραφής