Εμφάνιση απλής εγγραφής

dc.creatorEleftheriadis T., Pissas G., Sounidaki M., Antoniadi G., Rountas C., Liakopoulos V., Stefanidis L.en
dc.date.accessioned2023-01-31T07:37:20Z
dc.date.available2023-01-31T07:37:20Z
dc.date.issued2017
dc.identifier10.1007/s11010-016-2915-7
dc.identifier.issn03008177
dc.identifier.urihttp://hdl.handle.net/11615/71358
dc.description.abstractIn atherosclerosis-associated pathologic entities characterized by malnutrition and inflammation, l-tryptophan (TRP) levels are low. Insulin resistance is an independent cardiovascular risk factor and induces endothelial dysfunction by increasing fatty acid oxidation. It is also associated with inflammation and low TRP levels. Low TRP levels have been related to worse cardiovascular outcome. This study evaluated the effect of TRP depletion on endothelial dysfunction under conditions that imitate insulin resistance. Fatty acid oxidation, harmful pathways due to increased fatty acid oxidation, and endothelial dysfunction were assessed in primary human aortic endothelial cells cultured under normal glucose, low insulin conditions in the presence or absence of TRP. TRP depletion activated general control non-derepressible 2 kinase and inhibited aryl hydrocarbon receptor. It increased fatty acid oxidation by increasing expression and activity of carnitine palmitoyltransferase 1. Elevated fatty acid oxidation increased the formation of reactive oxygen species (ROS) triggering the polyol and hexosamine pathways, and enhancing protein kinase C activity and methylglyoxal production. TRP absence inhibited nitric oxide synthase activity in a ROS-dependent way, whereas it increased the expression of ICAM-1 and VCAM-1 in a ROS independent and possibly p53-dependent manner. Thus, TRP depletion, an amino acid whose low levels have been related to worse cardiovascular outcome and to inflammatory atherosclerosis-associated pathologic entities, under conditions that imitate insulin resistance enhances fatty acid oxidation and induces endothelial dysfunction through ROS-dependent and independent pathways. These findings may offer new insights at the molecular mechanisms involved in accelerated atherosclerosis that frequently accompanies malnutrition and inflammation. © 2017, Springer Science+Business Media New York.en
dc.language.isoenen
dc.sourceMolecular and Cellular Biochemistryen
dc.source.urihttps://www.scopus.com/inward/record.uri?eid=2-s2.0-85011590958&doi=10.1007%2fs11010-016-2915-7&partnerID=40&md5=a40c9e99b5289068928c015d2caca336
dc.subjectaromatic hydrocarbon receptoren
dc.subjectcarnitine palmitoyltransferase Ien
dc.subjectgeneral control non derepressible 2 kinaseen
dc.subjectglucoseen
dc.subjecthexosamineen
dc.subjectinsulinen
dc.subjectintercellular adhesion molecule 1en
dc.subjectmethylglyoxalen
dc.subjectnitric oxide synthaseen
dc.subjectphosphotransferaseen
dc.subjectpolyolen
dc.subjectprotein kinase Cen
dc.subjectreactive oxygen metaboliteen
dc.subjecttryptophanen
dc.subjectunclassified drugen
dc.subjectvascular cell adhesion molecule 1en
dc.subjectaromatic hydrocarbon receptoren
dc.subjectfatty aciden
dc.subjectreactive oxygen metaboliteen
dc.subjecttryptophanen
dc.subjectaortic endothelial cellen
dc.subjectapoptosisen
dc.subjectArticleen
dc.subjectcontrolled studyen
dc.subjectcytotoxicityen
dc.subjectendothelial dysfunctionen
dc.subjectenzyme activationen
dc.subjectenzyme activityen
dc.subjectenzyme inhibitionen
dc.subjectfatty acid oxidationen
dc.subjecthumanen
dc.subjecthuman cellen
dc.subjectinsulin resistanceen
dc.subjectaortaen
dc.subjectbiological modelen
dc.subjectcell cultureen
dc.subjectcytologyen
dc.subjectdeficiencyen
dc.subjectendothelium cellen
dc.subjectinsulin resistanceen
dc.subjectlipid metabolismen
dc.subjectmetabolismen
dc.subjectoxidation reduction reactionen
dc.subjectrisk factoren
dc.subjectsignal transductionen
dc.subjectAortaen
dc.subjectCells, Cultureden
dc.subjectEndothelial Cellsen
dc.subjectFatty Acidsen
dc.subjectHumansen
dc.subjectInsulin Resistanceen
dc.subjectLipid Metabolismen
dc.subjectModels, Biologicalen
dc.subjectOxidation-Reductionen
dc.subjectReactive Oxygen Speciesen
dc.subjectReceptors, Aryl Hydrocarbonen
dc.subjectRisk Factorsen
dc.subjectSignal Transductionen
dc.subjectTryptophanen
dc.subjectSpringer New York LLCen
dc.titleTryptophan depletion under conditions that imitate insulin resistance enhances fatty acid oxidation and induces endothelial dysfunction through reactive oxygen species-dependent and independent pathwaysen
dc.typejournalArticleen


Αρχεία σε αυτό το τεκμήριο

ΑρχείαΜέγεθοςΤύποςΠροβολή

Δεν υπάρχουν αρχεία που να σχετίζονται με αυτό το τεκμήριο.

Αυτό το τεκμήριο εμφανίζεται στις ακόλουθες συλλογές

Εμφάνιση απλής εγγραφής