Εμφάνιση απλής εγγραφής

dc.creatorSaenz, P. J.en
dc.creatorValluri, P.en
dc.creatorSefiane, K.en
dc.creatorKarapetsas, G.en
dc.creatorMatar, O. K.en
dc.date.accessioned2015-11-23T10:46:43Z
dc.date.available2015-11-23T10:46:43Z
dc.date.issued2014
dc.identifier10.1063/1.4866770
dc.identifier.issn1070-6631
dc.identifier.urihttp://hdl.handle.net/11615/32749
dc.description.abstractThis paper investigates the effects of phase change on the stability of a laterally heated liquid layer for the first time. The interface is open to the atmosphere and vapor diffusion is the rate-limiting mechanism for evaporation. In this configuration, the planar layer is naturally vulnerable to the formation of travelling thermal instabilities, i.e., hydrothermal waves (HTWs), due to the presence of temperature gradients along the gas-liquid interface. Recent work carried out for deformable interfaces and negligible evaporation indicates that the HTWs additionally give rise to interface deformations of similar features, i.e., physical waves. The study presented here reveals that phase change plays a dual role through its effect on these instabilities: the latent energy required during the evaporation process tends to inhibit the HTWs while the accompanying level reduction enhances the physical waves by minimizing the role of gravity. The dynamics of the gas phase are also discussed. The HTW-induced convective patterns in the gas along with the travelling nature of the instabilities have a significant impact on the local evaporation flux and the vapor distribution above the interface. Interestingly, high (low) concentrations of vapor are found above cold (hot) spots. The phase-change mechanism for stable layers is also investigated. The Marangoni effect plays a major role in the vapor distribution generating a vacuum effect in the warm region and vapor accumulations at the cold boundary capable of inverting the phase change, i.e., the capillary flow can lead to local condensation. This work also demonstrates the inefficiencies of the traditional phase change models based on pure vapor diffusion to capture the dynamics of thermocapillary flows. (C) 2014 AIP Publishing LLC.en
dc.sourcePhysics of Fluidsen
dc.source.uri<Go to ISI>://WOS:000332322000033
dc.subjectTHERMOCAPILLARY LIQUID LAYERSen
dc.subjectHORIZONTAL TEMPERATURE-GRADIENTen
dc.subjectOPENen
dc.subjectCYLINDRICAL ANNULIen
dc.subjectPRANDTL-NUMBER FLUIDen
dc.subjectSURFACE-TENSIONen
dc.subjectCONVECTIVEen
dc.subjectINSTABILITIESen
dc.subjectNUMERICAL-SIMULATIONen
dc.subjectNEUTRAL STABILITYen
dc.subjectBUOYANT FORCESen
dc.subjectSILICONE OILen
dc.subjectMechanicsen
dc.subjectPhysics, Fluids & Plasmasen
dc.titleOn phase change in Marangoni-driven flows and its effects on the hydrothermal-wave instabilitiesen
dc.typejournalArticleen


Αρχεία σε αυτό το τεκμήριο

ΑρχείαΜέγεθοςΤύποςΠροβολή

Δεν υπάρχουν αρχεία που να σχετίζονται με αυτό το τεκμήριο.

Αυτό το τεκμήριο εμφανίζεται στις ακόλουθες συλλογές

Εμφάνιση απλής εγγραφής