Mostra i principali dati dell'item

dc.creatorPapanikolaou, V.en
dc.creatorIliopoulos, D.en
dc.creatorDimou, I.en
dc.creatorDubos, S.en
dc.creatorTsougos, I.en
dc.creatorTheodorou, K.en
dc.creatorKitsiou-Tzeli, S.en
dc.creatorTsezou, A.en
dc.date.accessioned2015-11-23T10:44:06Z
dc.date.available2015-11-23T10:44:06Z
dc.date.issued2009
dc.identifier10.3892/ijo_00000430
dc.identifier.issn1019-6439
dc.identifier.urihttp://hdl.handle.net/11615/31887
dc.description.abstractCancer cell characteristics may play a pivotal role in the response to therapy by activating or deactivating different molecular pathways. In the present study, we investigated the implication of breast cancer cell features, such as HER2 and p53 in the activation of telomerase upon exposure to ionizing radiation. Telomerase is among the most important cancer biomarkers, conferring to tumor cells unlimited proliferative capacity, increased survival potential and resistance to several types of cellular stress. We investigated possible mechanisms regulating telomerase in six irradiated breast cancer cell lines (MCF-7, MCF-7/HER2, MDA-MB-231, SK-BR-3, BT-474 and HBL-100) differing in their HER2, p53 and ER alpha status. hTERT mRNA expression was evaluated by real-time PCR and telomerase activity by the TRAP assay. HER2, c-myc, p53 and p21 protein levels were evaluated by Western blotting. Silencing of hTERT and HER2 was achieved by small interfering RNA technology. Chromatin immunoprecipitation was used to evaluate H3 histone acetylation status, as well as myc/mad/max and p53 transcription factors interaction with the hTERT promoter. Our results showed for the first time, that only HER2-positive cells, independently of their p53 status, upregulated hTERT/telomerase, while knockdown of hTERT increased radio-sensitivity. Knockdown of HER2 also led to increased radio-sensitivity and downregulation of hTERT/ telomerase. We also demonstrated that c-myc and mad1 regulate hTERT expression in all irradiated breast cancer cells. We conclude, for the first time, that HER2 phenotype upregulates hTERT through c-myc activation and confers radio-resistance to breast cancer cells.en
dc.sourceInternational Journal of Oncologyen
dc.source.uri<Go to ISI>://WOS:000270616700022
dc.subjectHER2en
dc.subjectionizing radiationen
dc.subjectbreast canceren
dc.subjecttelomeraseen
dc.subjectp53en
dc.subjectMESSENGER-RNA EXPRESSIONen
dc.subjectIMMORTAL CELLSen
dc.subjectTUMOR-CELLSen
dc.subjectDOWN-REGULATIONen
dc.subjectGENEen
dc.subjectSUBUNITen
dc.subjectRADIATIONen
dc.subjectRADIOCURABILITYen
dc.subjectTRANSCRIPTIONen
dc.subjectAPOPTOSISen
dc.subjectOncologyen
dc.titleThe involvement of HER2 and p53 status in the regulation of telomerase in irradiated breast cancer cellsen
dc.typejournalArticleen


Files in questo item

FilesDimensioneFormatoMostra

Nessun files in questo item.

Questo item appare nelle seguenti collezioni

Mostra i principali dati dell'item