Cobalt induces hypoxia-inducible factor-1 alpha expression in airway smooth muscle cells by a reactive oxygen species- and PI3K-dependent mechanism
Ημερομηνία
2004Λέξη-κλειδί
Επιτομή
Cobalt can mimic hypoxia and has been implicated as a cause of lung defects. However, the effect of cobalt on airway smooth muscle (ASM) cells has not been analyzed in detail. In this article, we use primary cultures of ASM cells from rabbit trachea and show that exposure to cobalt chloride causes a rapid increase of the intracellular levels of hypoxia-inducible factor-1alpha, which is detected predominantly inside the nucleus. With the use of specific inhibitors, we demonstrate that induction of hypoxia-inducible factor-lalpha by cobalt depends on active protein synthesis but not transcription. Furthermore, wortmannin, LY294002, and N-acetyl-L-cysteine inhibit the effect of cobalt, suggesting that it involves the phosphaticlylino-sitol 3 kinase pathway and production of reactive oxygen species. Interestingly, cobalt chloride attenuates the contractile response of rabbit airways induced by potassium chloride, but not by acetylcholine, suggesting a link between the cellular response to hypoxic stimuli and the contractile properties of ASM cells.