Now showing items 1-5 of 5

    • Cerebral and non-cerebral coenurosis: on the genotypic and phenotypic diversity of Taenia multiceps 

      Christodoulopoulos G., Dinkel A., Romig T., Ebi D., Mackenstedt U., Loos-Frank B. (2016)
      We characterised the causative agents of cerebral and non-cerebral coenurosis in livestock by determining the mitochondrial genotypes and morphological phenotypes of 52 Taenia multiceps isolates from a wide geographical ...
    • Cytochrome c as a potentially clinical useful marker of mitochondrial and cellular damage 

      Eleftheriadis T., Pissas G., Liakopoulos V., Stefanidis I. (2016)
      Mitochondria are evolutionary endosymbionts derived from bacteria. Thus, they bear molecules, such as mitochondrial DNA (mtDNA) that contains CpG DNA repeats and N-formyl peptides (FPs), found in bacteria. Upon cell necrosis ...
    • Detection of mitochondrial transfer RNA (mt-tRNA) gene mutations in patients with idiopathic pulmonary fibrosis and sarcoidosis 

      Daniil Z., Kotsiou O.S., Grammatikopoulos A., Peletidou S., Gkika H., Malli F., Antoniou K., Vasarmidi E., Mamuris Z., Gourgoulianis K., Zifa E. (2018)
      Mitochondrial reactive oxygen species production may lead to tissue injury associated with two respiratory disorders of unknown origin which are shared by common tissue fibrosis, IPF and sarcoidosis. Sequence analysis of ...
    • Positive selection and precipitation effects on the mitochondrial NADH dehydrogenase subunit 6 gene in brown hares (Lepus europaeus) under a phylogeographic perspective 

      Stefanović M., Djan M., Veličković N., Beuković D., Lavadinović V., Zhelev C.D., Demirbaş Y., Paule L., Gedeon C.I., Mamuris Z., Posautz A., Beiglböck C., Kübber-Heiss A., Suchentrunk F. (2019)
      Previous studies in hares and jackrabbits have indicated that positive selection has shaped the genetic diversity of mitochondrial genes involved in oxidative phosphorylation, which may affect cellular energy production ...
    • Recurrent horizontal transfer identifies mitochondrial positive selection in a transmissible cancer 

      Strakova A., Nicholls T.J., Baez-Ortega A., Ní Leathlobhair M., Sampson A.T., Hughes K., Bolton I.A.G., Gori K., Wang J., Airikkala-Otter I., Allen J.L., Allum K.M., Arnold C.L., Bansse-Issa L., Bhutia T.N., Bisson J.L., Blank K., Briceño C., Castillo Domracheva A., Corrigan A.M., Cran H.R., Crawford J.T., Cutter S.M., Davis E., de Castro K.F., De Nardi A.B., de Vos A.P., Delgadillo Keenan L., Donelan E.M., Espinoza Huerta A.R., Faramade I.A., Fazil M., Fotopoulou E., Fruean S.N., Gallardo-Arrieta F., Glebova O., Gouletsou P.G., Häfelin Manrique R.F., Henriques J.J.G.P., Horta R.S., Ignatenko N., Kane Y., King C., Koenig D., Krupa A., Kruzeniski S.J., Lanza-Perea M., Lazyan M., Lopez Quintana A.M., Losfelt T., Marino G., Martínez Castañeda S., Martínez-López M.F., Masuruli B.M., Meyer M., Migneco E.J., Nakanwagi B., Neal K.B., Neunzig W., Nixon S.J., Ortega-Pacheco A., Pedraza-Ordoñez F., Peleteiro M.C., Polak K., Pye R.J., Ramirez-Ante J.C., Reece J.F., Rojas Gutierrez J., Sadia H., Schmeling S.K., Shamanova O., Sherlock A.G., Steenland-Smit A.E., Svitich A., Tapia Martínez L.J., Thoya Ngoka I., Torres C.G., Tudor E.M., van der Wel M.G., Vițălaru B.A., Vural S.A., Walkinton O., Wehrle-Martinez A.S., Widdowson S.A.E., Zvarich I., Chinnery P.F., Falkenberg M., Gustafsson C.M., Murchison E.P. (2020)
      Autonomous replication and segregation of mitochondrial DNA (mtDNA) creates the potential for evolutionary conflict driven by emergence of haplotypes under positive selection for ‘selfish’ traits, such as replicative ...