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YNEYOYNH AHAQZH NEPI AKAAHMAIKHZ AEONTOAOTIAZ KAI MINEYMATIKQN
AIKAIQMATQN

Me TArpn €Miyvwon TwV CUVETELWVY TOU VOUOU TEPL TIVEUUATIKWY SIKALWUATWY, SNAWVW
pNTA OTL N mapovoa SL6akTtopLkn dLatpLPn, KABWE Kal Ta NAEKTPOVIKA apxeia Kot tnyaiot
KwSIKEG Tou avamtuxBnkav 1 tpomomowidnkav ota mAaiocla autig tng SatplPng,
QamoTeEAOUV  QTOKAELOTIKA TIPOIOV TPOCWTIKAG Hou  epyaciag, 6ev mpooBaAiouv
omotacdnmote popdnc Slkalwpata SlovonTikng OLOKTNOLOG, TPOCWTIIKOTATAG KoL
TIPOOWTILKWV SeSopévwy Tpitwy, Sev mepléxouv €pya/slodopéC TPiTwV yla Ta ormola
amatteitol adela Twv dnuioupywv/dikatoUxwy Kot gv elval Poidv HEPLIKAG N OALKAG
avtypadng, ot mnyéc e mou xpnowomowBnkav meplopilovrol ot BiBAloypadikeg
avadopEC Kal LOVOV Kal TTANPOUV TOUG KAVOVEC TNG ETILOTNMOVLKAG mapaBeong. Ta onueia
omou €xw xpnoluormolnoel &€eg, Keipevo, apxeia f/kal mNyEG AAMwv cuyypadEwyv
avadépovial eUSLAKPLTO OTO KEWWMEVO HME TNV KATAAANAN TOPOIOUTI) KAl N OXETLKN
avadopd mneplhapfavetal oto TUAMA Twv PPAloypadikwy avadopwyv HE TANPEN
nieplypadr. AnAwvw eniong OtL Ta amoteAéopaTa TNG Epyaciag dev €xouv xpnoLdomnolnBet
yla tTnv anoktnon aAAou mtuxiou. AvaAapBavw MARPWC, ATOWLKA KOL TIPOCWTTLKA, OAEC TIC
VOULKEC Kal SLOLKNTIKEC CUVETELEC TTOU SUvaTaAL VoL TPOKUOUV OTNV TEPITITWON KATA TNV
orola anodelyBei, Slaxpovikd, OTL N epyacia auth A TUHAKA TNG dEV Pou avhkeL SLOTL eival

TPOiOV AOYOKAOTIAG.

O AnAwv

Anuntplog Kovtoyldvvng
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ouvepyaoia otnv avamtuén EpeUVNTIKOU £PYOU TIOU QVTATTIOKPIVETOL OTA EPEUVNTIKA LOU

evlladépovra.
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Ph.D. Dissertation

Design Strategies Towards the Enhancement of Short-Term

Forecasting in the Energy Sector

Kontogiannis Dimitrios

Abstract

Short-term forecasting processes constitute an integral part of data analysis in the energy
sector since their integration in demand response programs, energy management systems,
smart grid and energy market applications is valuable towards the examination of complex
and volatile time series variables such as load and electricity price. Short-term load
forecasting models offer valuable insight towards consumption patterns through the
inspection of influential factors and introduce intelligent ways of monitoring electricity
demand as well as the occurrence of irregular events in order to improve the decision-
making processes of electric utilities and reinforce grid stability respectively. Short-term
electricity price forecasting models address the challenge of price volatility and contribute
towards the development of robust strategies towards efficient resource management and
optimal energy transactions for all types of energy market participants and consumers. It
is evident that methods focusing on load and electricity price time series follow a similar
structure including preprocessing, forecasting and output modules for the estimation of
the target variables after data collection. Therefore, this dissertation acknowledges the
shared and overlapping structure of those forecasting processes and addresses prominent
challenges and research gaps associated with each component through the development
of optimal design strategies that improve the overall model performance. The study of the
preprocessing module led to the assessment of robust feature selection and highlighted
the role of rule generation for efficient examination of the studied environments. Since
prominent challenges in data preprocessing are connected to dataset dimensionality and
feature interpretability, a method towards the generation of a compact and interpretable
set of rules through hybrid feature selection was proposed. Furthermore, the study of the

main forecasting framework denoted challenges with regards to standalone, combinatorial
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and meta-modeling design philosophies. In standalone modeling, the uncertainty
surrounding estimator selection due to the insufficient exploration of edge cases often
hinders research progress and leads to confusion with regards to training behavior.
Consequently, a comparative study examining the baseline performance of neural network
methodologies for high resolution predictions addresses one of the edge cases where the
brevity of the training process and time constraints could provoke this uncertainty.
Regarding combinatorial modeling, the uncertainty of estimation member selection in
ensemble methods coupled with the challenges of concept and data drift could lead to
arbitrary design decisions and suboptimal model combinations. As a result, a novel design
strategy focusing on the deterministic selection of estimator members based on the
structural characteristics of peak and non-peak indices was proposed in order to generate
performant ensemble learning models. Moreover, the examination of meta-modeling
approaches highlighted the performance benefits of additional forecasting layers and led
to the introduction of a forecasting approach that estimated load consumption through the
inspection of similarity and causality for the derivation of alternative time series
representations. This approach improved the error metrics compared to the base LSTM
ensemble model, denoting the impact of community factors when the quality of the input
dataset is far from ideal. Lastly, following this a posteriori design method, the study of the
output module identified the need for performance refinement through additional
structures that estimate and minimize error values towards increased model stability and
improved accuracy. In this scope, an error compensation module was developed towards
the performance improvement of a deep learning structure for the task of short-term
electricity price forecasting. This approach introduced an autoregressive model for the
estimation of residual training error, resulting in more consistent predictions and overall
lower error metrics when tested in different training scenarios. Additionally, this method
discussed the potential addition of hyperparameters that configure the error
compensation module for future applications and benchmarks. The extension of the
strategies presented in this dissertation could enable the development of more flexible and
adaptive forecasting pipelines that could enhance the capabilities of future energy

applications.
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Awbaktopikn Aatplpn

ZTPATNYLKEG ZXESLAOMOU yia Tn BeAtiotonoinon
BpoaxumnpoBsopwv MpoPAéPewv otov Topéa EvEpyeLog

Anuntplog Kovtoylavvng

NepiAnyn

OuL Siepyaocieg PBpaxunpoBeoung mpoPAePng amoteAolV QVATOOTIOCTO KOMUATL TNG
avaAuong O6edopévwv OTOV TOMEX TNG EVEPYELAG KAOBWG N EVOWMATWON TOUG OE
TIPOYPAHHATA avTanokplong {NTnong, cuotnpata dlaxeiplong evépyelag, eudpun diktua
EVEPYELAG KOl Ot €DAPHUOYEC EVEPYELNKWY OYOPWV Elval TOAUTIUN yla TNV €€€taon
TIOAUTIAOKWV KOl EVUETAPBANTWY XPOVOOELPWY ONMWE TwV HETABANTWY GOpTIOU KL TNG
TIMAG nNAEKTPKAG evépyelag. Ta PpaxumpoBeopa poviéAa mpoBAedng doptiou
NPoop£POuUV TOAUTIUEG TTANPOPOPILEC OXETIKA HE TA TPOTUTIOL KATAVAAWONG UECW TOU
€EAEyXOU TOPAYOVIWV ETIPPONG KOl €L0AYOUV €UPUELG TpOmoug mapakoAouBnong tng
{ATNONG NAEKTPLKAG €eVEPYELaG KaBwCG Kal tng €udAVIONG AKAVOVIOTWVY YEYOVOTWYV,
TIPOKELPEVOU va BeAtiwoouv TG Sadikaocie¢ ANPng amodpAcewv TwV UNNPECLWY
NAEKTPLOMOL KOWNAG woEAElAC Kal va evioxUoouv Tn otabepotnta tou SikTtuou
avtiotoiyw¢. Ta BpaxumpoBeopa poviéAa TPOPAEPNG TIUWV NAEKTPLKAG EVEPYELOG
QVTILETWTTII{OUV TNV MPOKANON TNG ALOTABELAG TWV TIUWV Kal cUPBAAAoUV oTnV avamntuén
LOXUPWV OTPATNYLKWY VLA TNV OIMOTEAECUATLKI SLaXEIPLON TWV EVEPYELOKWV TIOPWV KAl TN
BeAtiotomnoinon evepyelokwv cuvaAAaywv yla OAa Ta LEAN TWV EVEPYELOKWYV OlyOPWV KoL
yla Toug KotavaAwtec. Eival mpodaveg otL ol péBodol mou €0TlAlouV OTLC XPOVOOELPEG
doptiou KOl  TWMWV  NAEKTPIKAG  €VvEpyelag akoAouBouv  mapopola  doun,
ocuuneplhapBavovtag otolxeia poemnefepyaciag, mpoBAedng kot e€680ou yla TNV ektipunon
TWV HETABANTWV-OTOXWV UETA TN oUAAoyn Oedopévwv. Emopévwe, auti n Swatppn
avayvwpileL TNV Kown Kal EMKOAUTITOMEVN dopn autwyv Twv dlepyactwy poPAedng Kot
ameuBOUVETAL OTNV QVTIHETWILON €UPAVWY TIPOKANCEWV KOl EPEUVNTIKWY KEVWV TIOU
oxetilovtal pe kdBe Soukd otolxelo MEow TNG avamtuéng PBEATIOTWV OTPATNYLKWV

oxeSlaopoU mou BEATIWVOUV TN CUVOALKI amodoon TwV HOVTEAWV. H HEAETN Tou SopLKOU
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otolxeiov Tmpoenegepyaociag odnynoe otnv afloAdoynon TNG LOXUPNAG  ETUAOYNAG
XOPAKTNPLOTIKWY Kol aveéSeLEe TO POAO TNG MOPAYWYNG KAVOVWY YLa TNV ATOTEAECUATIKNA
e€étaon Twv UumMO peAétn meplBaldoviwy. KabBwg e€éxouoeg TPOKAACEL OTNV
npoenefepyaoia Sedouévwv cuvdéovtal He TIG SLAOTACELS TwV CUVOAWY SES80UEVWVY KOl
TNV EPUNVEUCLUOTNTO TWV XOPAKTNPLOTIKWY, TPpoTabnke pia péBodog yla tn dSnuoupyia
EVOC OUMTAYOUC KOl EPMNVEUCLUOU OUVOAOU KAVOVWV HECW UPPLOIKNAG €emAOYNAG
XOPOAKTNPLOTIKWVY. EMUMpooBETwe, n HeAETN TOU SOULKOU OTOLXELOU TTOU AmMOTEAEL TO KUpPLO
mAaiolo TPOPAednG eudavioe TPOKANOCEL TOU OXETI(OVTAL HE TIC OUTOVOUEG,
OUVOUOOTIKEG KOl META-POVTEAOTIONTIKEG LAooodieg oxedlaopoU. TNV AUTOVOUN
povtelomoinon, n aBefadtnta mou TEPLBAAEL TNV €AoY EKTIUNTWV Adyw TNG
QVETOPKOUG €€EPEVUVNONG AKPALWY TIEPUTTWOEWY CUXVA TOPEUTOSIEL TNV MPO0SO TNG
€peuvac KaL odnyel og olyxuon Mou oxeTileTal Pe TN cUUMEPLPOPA EKMALSEVONG. ZUVETWC,
plo. ouykpltikn peAETn mou efetalel tnv amodoon avadopd¢ twv peBodoloylwv
VEUPWVIKWV Slktuwv yla mpoPAEPels uPnAng avaluong avadépetal os pia amd Tig
OKPOALEG TIEPUTTWOELG OTIOU N CUVOTTTIKOTNTA TNG Stadikaoiag ekmaidsuong kal oL Xpovikoil
Teploplopol Ba pmopovoav va MPokaAEcouv auth tv afefatdtnta. Itn cuvduaoTiKA
povtelonoinon, n afeBatdtnta tng EMAOYNC TWV EKTLUNTWV-UEAWV yla LeBodoug cuvoiou
o€ ouvbuaopo HE TG TPOKANOELS amokAlvouoag avtiAnyng poviéAou Kal amokAlong
S6ebopévwy Ba pmopoucav va odnynoouv o aubaipeteg oxeSLOOTIKEG amodAoELS Kall
avemapkel ouvbuaopolg povtéAwv. Katd ocuvemela, mpotabnke pia véa otpatnylkn
oXeSLAoHOU TIOU ETUKEVTPWVETAL OTNV VIETEPULVLOTLKN ETIAOYI TWV LEAWY TOU EKTLUNTA LE
Bdon ta Soulkd XapPAKTNPLOTIKA TwV SEKTWV KopUdwWONG Kal pn-kopudwaong wWote va
SnuioupynBolv amobotikd povtéAa pabnong ouvolou. Emiong, n e€€taocn Twv
npooeyyloewv peta-povtehomnoinong avedelée ta odpéAn anddoong mou MPOKUTITOUV amnod
N XPNon TEPLOCOTEPWY ETUMESWV TPOPAsYPNG Kal obnynoe otnv Eeloaywyn HLog
npoaoéyylong npoPAedng mou umoAoyLle TNV Katavalwaon ¢optiou HEow TNG EMLOKOTNONG
NG OHOLOTNTAC KAl TNG ALTLOTATAC yla T Snuoupyia EVOAAOKTIKWY QvVOmopaoTACEWY
XPOVoOoelpwV. AuTr n pooéyylon BeAtiwoe TG petproelg opAAUATOG 0 CUYKPLON UE TO
Baowkd povtédo ouvoAlou LSTM, umodnAwvovtag tnv emibpoon Twv mMopayoviwv
KOLWVOTNTAC OTAV N TOLOTNTA TOU GUVOAOU S£80UEVWV €Ll0OS0U OMEXEL APKETA OO TNV
davikn. TéAog, akoAouBwvtag auth Tn HEBodo NG ek Twv UOTEPWY oxedlaong, Katd T

HEAETN TOU SopkoU otolxeiou e€660u evtomiotnKe n avaykn ylo feAtiwon anodoong HEow
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NMPOOOeTWY SOUWV TIOU EKTLUOUV Kal EAAXLOTOTOLOUV TI( TIMEG OPAAPATOC yla TV
avénuévn otabepotnta kot PeATiwpévn okpifela Tou POVIEAOU. e autd TO TEedio,
avantuxbnke éva SOUIKO oTolkelo avtlotdaduiong odpaApdtwyv yia T PeAtiwon tng
andédoong plag Sdoung Pablag pabnong ywa tn PBpaxumpobeoun mPOPAsPYn THWV
NAEKTPLKAG EVEPYELAC. AUTH N TIPOCEYYLON ELOAYAYE €VOl AUTOTIOALVOPOULKO HOVTEAO yla
TNV eKTiUNON TOU UTIOAEUTOUEVOU OPAAUATOG EKTTALSEVONG, 08NYWVTOG OE TILO CUVETELC
TIPOPAEPELC KOL O CUVOALKA XOUNAOTEPEG UETPNOELG OPAAUATOG HETA amd SOKIUEC OE
SlapopeTikad oevapla eknaidevong. Emumpoobétwg, autr n péBodog e¢étaoe tnv mbavn
TMPOCONKN UNEPTOPOUETPWY ylo TN OSlapdpdwon Tou otolkeiou avtlotabuiong
oPaApATWY 0 UEANOVTIKEC e£dapUOYEC Kal HovTtEAa avadopdg. H eméktaon Twv
OTPOTNYLKWV TIou Tapouctalovtal o auth Tt datppry Ba unopouoe va emtpePeL TNV
QVATTTUEN TILO EVEALKTWVY KOl EUTIPOCAPHOOTWY Slepyactwy TPpoPAedng mou Ba evioxvav

TLG SUVATOTNTEG LEAAOVTIKWY EVEPYELAKWVY EGAPUOYWV.
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MNpoPAePn doptiou, MPOPAEPYN TUAG NAEKTPLKAG EVEPYELOG, AVTATMOKPLON {ATNONG, MNXAVIKA
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Chapter 1 Introduction

1.1 Motivation

The evolution of power systems coupled with the growth and the increased complexity of
electricity markets introduce a plethora of challenges as well as interesting research
questions often connected to the study and processing of time series data such as load and
electricity price. Modern power grid design focuses on the development of robust data-
driven strategies that could control the bidirectional flow of information between
electricity providers and consumers since the penetration of renewable energy sources and
the increase in energy demand could lead to unstable operation, poor resource
management and inefficient scheduling, resulting in imbalanced demand response and
consumer dissatisfaction [1]. Additionally, modern electricity markets often adopt
sophisticated data-driven methods for the design of smart energy policies due to the
phenomenon of price volatility in order to perform efficient electricity trading [2]. Short-
term forecasting tasks involving load and electricity price time series add immense value to
those data-driven approaches since the ability to predict these values accurately over a
prediction horizon of several minutes or hours provides the necessary knowledge for
optimal decision-making. Accurate short-term load forecasting contributes towards the
effective planning and reliable operation of modern power grids since irregular events
could be avoided and demand response flexibility could be improved. On a consumer level,
short-term load forecasting could indirectly influence the rescheduling of daily tasks
through intelligent analytics for the optimization of electricity consumption and the
optimal response to financial incentives. Moreover, load forecasting enables the
development of cost-effective consumption strategies that could assist in flattening the
demand curve [3]. Accurate short-term price forecasting contributes to the efficiency of
energy transactions due to the minimization of uncertainty, giving market participants the
opportunity to react to changes in price appropriately and follow price trends [4]. Both
categories of energy forecasting tasks are valuable to the development of real-time

applications and energy management systems.
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Short-term forecasting tasks for the prediction of load or electricity price typically follow a
regression analysis in order to interpret the relationships between the dependent time
series which expresses the target variable and several independent influencing factors such
as temperature, fuel cost or historical load and price values derived from previous
timesteps. Recent research on the field shows that prominent methods for those
regression tasks stem from a statistical and artificial intelligence background. Statistical
methods follow a more traditional path towards the discovery of linear and nonlinear
relationships between the data based on assumptions that lead to the construction of a
mathematical model which best fits the dataset. These forecasting approaches often follow
a simple and easily interpretable structure, requiring less computing power for data
processing. However, the resulting models are often limited due to those initial
assumptions about the dataset that could impact the discoverability of patterns and trends
negatively. Furthermore, this simplicity of structure could hinder the predictive potency of
statistical methods since the resulting mathematical models may not be capable of
explaining all data dependencies equally well as the dataset becomes larger and the
relationships between features become increasingly complex. Methods such as linear
regression and autoregressive moving average are commonly utilized in those time series
forecasting tasks in order to predict future values of load and price through the

interpretation of trends and the examination of influencing factors [5].

On the other side of the spectrum, artificial intelligence methods approach function
approximation in a more flexible way, through the development of free-form models that
adapt to the input and iteratively learn the relationships between the variables. This
category of models often has a more complex structure with computations becoming
increasingly difficult to follow and interpret as the scale and the complexity of the
forecasting problems increase, essentially rendering them as black-box approaches. A
major set of artificial intelligence methods in this research space consists of machine
learning models. Machine learning approaches featuring prominent supervised learning
algorithms such as random forest and gradient boosted decision trees offer scalable and
performant solutions to regression tasks in the energy sector. Moreover, neural network
models such as multi-layer perceptron (MLP) and long short-term memory network (LSTM)

greatly contribute towards the development of dynamic and adaptive forecasting
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structures that process time dependencies efficiently and are capable of identifying all
possible interactions between independent variables as they follow an implicit detection
process for complex nonlinear relationships. The main disadvantages of machine learning
methods that could be encountered more frequently in neural network models are the lack
of interpretability, the increased computational burden and the proneness to overfitting.
These disadvantages could result in suboptimal prediction accuracy and generalization
issues as these models are integrated in real world applications. Complementary to
machine learning methods, fuzzy logic approaches aim to reinforce the interpretability of
forecasting models by introducing a set of rules that expresses the relationships between
features, rendering feature selection a manageable task for most artificial intelligence

algorithms [6].

Lastly, it is worth mentioning that while the categorization of the most prominent
forecasting methods highlights the contributions of linear and nonlinear statistical models
as well as machine learning algorithms and fuzzy systems, these approaches are not
necessarily utilized as standalone estimators for every load or price forecasting task.
Therefore, we have to acknowledge the broad set of design philosophies that lead to hybrid
modeling [7]. Hybrid modeling focuses on the combination of multiple estimators from the
previously discussed categories in order to develop robust structures that process the input
simultaneously or sequentially. As an example, fuzzy neural networks merge elements from
fuzzy inference systems and neural network design in order to utilize those principles
cooperatively or as a fully fused entity in time series forecasting. In addition to those
combinatorial approaches, hybrid modeling includes the plethora of ad hoc methods that
focus on the transformation or decomposition of the output for the purposes of a new
model which may function as an additional processing layer. This subcategory of hybrid
forecasting models form the set of meta-modeling approaches and offer significant value
to short-term forecasting research as they represent the extra step in combinatorial design
that could further improve prediction accuracy [8]. Figure 1.1 shows this categorization in
short-term load and price forecasting, denoting the most prominent types of methods in

this research space that substantially influenced the content of this dissertation.
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Figure 1.1: Categorization of prominent short-term load and price forecasting

methods and modeling methodologies.

1.2 Overview of Challenges and Research Gaps

This section outlines several prominent challenges and research gaps in the design and
implementation of short-term forecasting models in the energy sector, denoting the core
research directions followed in this dissertation. First, it is evident that since load and price
are influenced by a plethora of factors, the number of relevant features included in
datasets is large, forming a high-dimensional space where the sparsity and dissimilarity of
some feature groups could hinder the accurate generalization of the model and increase
the overall complexity of the forecasting structure. Consequently, the emergence of the
dimensionality challenge could contribute towards the emergence of interpretability issues
since a large amount of training data would be required for efficient learning and the
relationships between the studied variables could become too difficult to follow. The
challenges of dimensionality and interpretability show a degree of codependence and
could affect the performance of statistical as well as artificial intelligence methods [9]. In
statistical methods, interpretability issues are often strongly connected to dimensionality
since the initial set of assumptions for the dataset and the mathematical models utilized
are relatively simple. In artificial intelligence methods, the challenge of interpretability
could affect models utilizing low-dimensional feature spaces independently, when the

forecasting method follows a black-box approach for parameter tuning as it is commonly
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observed in neural network structures. It is evident that fuzzy inference systems could
reinforce the interpretability of a model since the decomposition of variables in linguistic
terms and the extraction of an accurate set of rules could clearly explain the complete
relationships between features. However, the algorithmic discovery of minimal rule sets
that maintain high levels of accuracy remains an open research question since most rule
bases on high-dimensional spaces either consider all possible rules, resulting in inefficient
inference systems that ignore the challenge of dimensionality, or utilize expert knowledge

which inherently does not define a deterministic and easily interpretable process.

Second, some research gaps related to the participation of estimators in forecasting
frameworks could be identified. In standalone modeling, research works often present
state of the art models as parts of a novel forecasting pipeline but there are not enough
research projects aimed at a comprehensive performance overview of a specific state of
the art approach in fundamental supervised learning tasks that utilize load or price time
series. Additionally, studies do not sufficiently cover forecasting tasks that could be
considered as edge cases in terms of training and convergence time. Consequently,
uncertainty often surrounds the selection of a specific model configuration when the most
prominent models such as the long short-term memory network have several performant
structures that could be applied on the same forecasting tasks. Therefore, without the
guidance of research works exploring this space, extensive and repeated testing could
delay the development of useful forecasting approaches. In combinatorial modeling and
especially in the development of ensemble forecasting methods, uncertainty surrounds the
selection of the estimator members as these are often included arbitrarily due to their
relevance or due to their prominence in recent research work. As a result, load and price
forecasting models that utilize diverse feature sets which follow different distributions
often fail to adapt to the input. The research space of deterministic strategies that generate
optimal estimator sets is not sufficiently explored and there are still several steps that need
to be taken towards the development of more modular, adaptive and generative
processes. Moreover, meta-modeling in short-term forecasting is an active and evolving
research topic since the intricacies of the data collection process reinforce the need for
models that generate and process different interpretations of the target variables in order

to efficiently capture patterns in non-ideal data structures.
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Third, the value of prediction refinement in combinatorial modeling should be
acknowledged since recent reviews and benchmarks do not often include post-processing
techniques in the forecasting pipeline. It is important to note that feedback systems
capable of processing residual error values could introduce several useful hyperparameters
for model selection as well as improved prediction accuracy. The inclusion of those systems
in enhanced and modular forecasting pipelines could reinforce prediction stability within
the specified prediction horizon, providing an additional tool against noisy forecasts.
Furthermore, the study or error compensation systems could address the inconsistencies
in the performance evaluation of estimators as error fluctuations in hourly or minutely

predictions could be reduced.

1.3 Dissertation Outline and Contributions

This dissertation aims to address the previously discussed challenges and research gaps in
the design and development of short-term load and price forecasting methodologies
through the analytical presentation of research projects that contribute towards the
enhancement of widely used forecasting processes in the energy sector. Therefore, this

dissertation is structured as follows:

In Chapter 2, a thorough examination of the short-term forecasting structure for time series
in the energy sector is presented and the main modules and processes utilized in most
recent research efforts conducting regression analysis for the prediction of load and
electricity price are discussed. The individual inspection of the processes that form
forecasting models in this research space enables the analysis of the challenges that could
potentially hinder the performance of each module and denote specific areas where our
research contributions could be applicable. This chapter highlights the roles of the data
collection module, the preprocessing module, the forecasting framework and the output
module, forming the baseline forecasting structure. Through the study of each process,
suitable approaches from the literature are highlighted for several prominent short-term
forecasting scenarios where the intricacies of each task are detailed. Furthermore, the
most prominent prediction evaluation techniques are outlined through the definition of
widely used error metrics. Lastly, an enhanced version of the forecasting process pipeline

is presented, suggesting proposed adjustments that could benefit the initial structure and
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improve the forecasting performance of several forecasting tasks when one or more of
those adjustments are applied. This enhanced version of the forecasting pipeline is directly

connected to the research works presented in the following chapters.

In Chapter 3, the enhancement of the preprocessing module is studied through the design
and implementation of a fuzzy system that features a hybrid feature selector towards the
reinforcement of interpretability and the reduction of the initial fuzzy dataset. This system
follows the forward chaining Mamdani approach and utilizes an improved decision tree
linearization for the generation of a small and accurate rule base. Additionally, the hybrid
feature selector combines metrics from extreme gradient boosting and decision tree
structures in order to derive a concise set of important features. Since several machine
learning methods utilize neural networks and neuro-fuzzy systems for consumer load
predictions and recommendations in energy management systems, the efficient processing
of additional fuzzy parameters such as weather data is an important step towards the
complete and accurate discovery of relationships between independent and dependent
variables. This discovery boosts the overall transparency of the model as the fuzzy rules
that connect the remaining features could clearly explain the values of neural network
parameters without the need to retrace every step of the computation process.
Additionally, an algorithmic approach for rule base generation often speeds up data
processing methods in this scope as expert knowledge and brute-force approaches could
no longer be viable for high-dimensional fuzzy datasets. Furthermore, robust feature
selection strategies are valuable tools towards dimensionality reduction, finding wide
application in most short-term load and price forecasting tasks. In this study, the
fuzzification of weather parameters enables the usage of the hybrid feature selector for
the discovery of the most impactful feature states that are strongly connected to consumer
load values. As a result, the performance evaluation of this fuzzy system showed that a
drastically smaller and slightly more accurate rule base could be generated at a lower time
frame when compared to the baseline decision tree linearization due to the integration of

the hybrid feature selector.

In Chapters 4, 5 and 6, an in-depth study of the forecasting layer addresses challenges and
research gaps in standalone, combinatorial and meta-modeling approaches through the

analysis of several research works. First, in Chapter 4, a study presenting a comprehensive
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performance comparison between multi-layer perceptron, convolutional neural network
and several long short-term network structures on the task of minutely active power
forecasting aims to present the behavior of widely used neural network models on a
fundamental short-term forecasting approach. This research work attempts to guide and
motivate research on similar tasks in the energy sector through the presentation of
prominent methods and the examination of error metrics as well as training time. This
project shows that while the forecasting performance of neural network structures on a
baseline configuration does not exhibit drastic differences in terms of error metrics, the
training time and the complexity of each architecture play an important role in model
selection since load and price predictions in the short-term horizon need to be derived
within strict intervals of minutes or hours as the models get recalibrated in order to include
newly recorded samples. Therefore, this study denotes that several important decisions
that need to be taken in standalone modeling when model complexity, prediction horizon

and computing resource availability are considered.

Second, in Chapter 5, a research project presenting a novel estimator selection strategy for
ensemble learning models addresses the overall uncertain and often arbitrary inclusion of
base estimators in combinatorial modeling. Since accurate short-term electricity demand
forecasting is vital to the evolution of smart grids and the development of robust demand
side management strategies, the selection of estimators that are most compatible to the
given input is an important task. Moreover, it is evident that as the scale of the forecasting
problem increases and time series from a diverse set of consumers are utilized, the need
to transition from static and centralized standalone predictors to more adaptive and
generative approaches that could manage the intricacies of those diverse data distributions
becomes accrescent. Therefore, this research project is motivated by the cluster-based
aggregate framework and introduces a flexible structural ensemble approach where the
base estimators are selected through the cross-examination of error metrics from the
evaluation of peak and non-peak indices. The use case presented in this study shows the
intended behavior of this strategy since this implementation enables the generation of

ensemble models that achieve the expected performance boost in a deterministic way.

Third, in Chapter 6, the impact of meta-modeling techniques towards the reduction of error

metrics is explored through a research project that introduces a short-term forecasting
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model utilizing the combined effects of similarity and causality for the robust estimation of
load. Data abnormalities stemming from a non-ideal data collection process could hinder
the accuracy of estimators and the inherent diversity of client time series could complicate
the interpretation of relationships throughout the training process. Therefore, this novel
approach shows that the utilization of different input datasets for the estimation of
additional load time series components through long short-term memory ensembles could
derive similar and causal data representations. These components are passed to a multi-
layer perceptron which functions as a meta-processing estimation layer that derives the
target output. Our experiments indicated that the inclusion of this meta-modeling
structure in the forecasting pipeline and the combined processing of similarity and causality
features resulted in more performant models when compared to neural network

ensembles utilizing only one output data representation.

In Chapter 7, a research work presenting a novel a posteriori processing methodology for
short-term electricity price forecasting based on residual error estimation addresses the
research gaps derived from the underutilization of error compensation systems in
combinatorial modeling and the lack of related hyperparameters in recent reviews and
benchmarks. The improvement of the output time series is the decisive final step towards
robust estimation in the energy sector since it enables the derivation of more stable error
profiles and the emergence of useful evaluation parameters that could be used in
optimization processes. The proposed methodology utilizes a benchmark deep neural
network structure for the prediction of day-ahead electricity prices and enhances the
output module with the development of an autoregressive process tuned by several
information criteria for the reduction of the error component in the final price prediction.
Our experiments indicated that this approach vyields improved error metrics when
compared to the baseline deep learning structure in several training scenarios and the

refined predictions shared increased stability throughout the forecasting horizon.

In Chapter 8, a comprehensive summary of the contributions is presented with additional
comments based on the results of our experiments that highlight the advantages and
disadvantages of the proposed methodologies. The integration of those methods in future
energy applications and benchmarks is discussed and the overall enhancement of the

forecasting pipeline with the inclusion of one or more of those methods is addressed.
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Furthermore, the motivation for future research work is included in this chapter and future
directions towards the expansion and the combination of the proposed methods are

analyzed with examples and use cases relevant to the research areas of short-term

forecasting and demand response in the energy sector.
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Chapter 2 Short-term Time Series Forecasting Structure in the Energy

Sector

Short-term forecasting tasks in the energy sector focus on the processing of time series
data for the derivation of estimated values for the prediction of load and electricity price.
This forecasting horizon covers predictions for up to one week ahead with more prominent
tasks targeting minutely, hourly and daily predictions. The predicted values for load and
price could reflect the expected value in that timeframe or the probability that summarizes
future events, expressed as a set of different outcomes. The estimation of the expected
values of load and price is commonly derived from tasks involving the approximation of a
mapping function which aims to interpret the relationships between input and output
variables. This forecasting approach is known as regression predictive modeling [10]. On
the other side of the spectrum, models predicting the occurrence of specific outcomes and
categorizing time series in groups are typically designed as classification and clustering
tasks respectively. Classification tasks take advantage of labeled time series features in
order to assign a label to a new and unlabeled time series based on common patterns.
These tasks could contribute towards the efficient association of consumer time series to
specific categories, formed by load and price policies, through the examination of historical
data and customer characteristics [11]. Clustering time series tasks focus on the separation
of unlabeled time series and the discovery of distinct groups based on patterns, distance
and similarity metrics. Load and price forecasting models often utilize clustering in order to
discover groups of similar consumers. Additionally, time series clustering approaches are
utilized for anomaly detection in power grids as well as energy markets [12]. In this
dissertation, we focus on the study and interpretation of relationships between the core
energy time series variables of load and price and the independent influencing factors that
affect them for the accurate prediction of target values. Therefore, we select regression
predictive modeling as the base design philosophy for the presentation and examination of
the time series forecasting structure. Classification and clustering methodologies support
this structure indirectly as optional processing tasks or supplementary forecasting tasks

when the time series data represent the consumption of a diverse consumer base.
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2.1 Pipeline Overview

A high-level examination of the processes that contribute towards the development of
predictive regression models for load and electricity price time series leads to the
distinction of several modules that form the path from the construction of the input to the
prediction of the output. The data collection module utilizes a set of methodologies for the
collection of raw data and organization of values into time series features. The output of
this module is the initial dataset made available for regression research and development.
This initial dataset consists of data points indexed in time order and includes the target
variables as well as a plethora of influencing factors. The values of those factors could either
be connected to the target time series based on specific timestamps or they could
independently characterize the entire time series. The features obtained from the data
collection module typically include most time series characteristics such as trends, seasonal
and nonseasonal cycles, pulses, steps and outliers [13]. Additionally, depending on the
quality of the data collection process, the initial dataset could have missing values, noisy

data and features that may not be strongly connected to the variables of load or price [14].

Some time series characteristics such as trends and seasonal patterns are valuable for the
development of robust estimators as their detection is an integral part of most models.
Sudden temporary or permanent shifts in the series level resulting in pulses and steps
respectively could lead to uncertainty and poor model fitting when the underlying events
are not properly explained. Furthermore, it is evident that the existence of missing values
as well as noisy and insignificant features could increase forecasting error, resulting in poor
load and price estimation. It is also worth mentioning that the initial dataset may not meet
several compatibility criteria that satisfy the fundamental assumptions of a model such as
data distribution, sample size and dataset dimensions, resulting in poor training
performance. Additionally, the scope of application for short-term forecasting tasks in the
energy sector is closely connected to the studied data structure. For example, models that
predict load values from a diverse set of consumers follow a different data structure when
compared to individual consumption predictions. Models aimed at larger groups of
consumers typically include load features for each consumer, increasing the dimensions of
the dataset and often requiring the application of clustering and classification methods for

optimal feature division. Therefore, the initial dataset is passed to the preprocessing
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module where a set of data transformations, decompositions and feature engineering
techniques could be applied in order to finalize the dataset structure and provide a
compatible data representation for each forecasting task. The output of the preprocessing
module contains the input and output features of the model. Time series splitting strategies
are utilized before any data transformation and feature engineering task is executed in
order to split the input and output features into training, validation and test sets given a
specified ratio. The training set typically contains the larger percentage of samples and is
used for the discovery of patterns and relationships between features during the learning
process. The validation set includes a smaller percentage of samples and is often utilized
for parameter tuning during training and for the prevention of overfitting. Lastly, the test
set often contains a percentage of samples comparable to the validation set and is used to
evaluate the performance of the forecasting models on unknown data after training. This
performance evaluation aims to derive unbiased metrics that denote the generalization
capabilities of the model as well as the magnitude of error. Data processing methodologies
are typically applied based on the data available in the training samples in order to ensure
that information from the sets used for model evaluation do not influence feature
engineering decisions, hence eliminating the bias of involving samples that are supposed

to remain unknown [15].

Following the data preprocessing, the resulting training and validation sets for input and
output features are passed to the forecasting framework. The forecasting framework
includes the estimation models as well as the supporting heuristics and algorithms that
could reinforce model selection, hyperparameter tuning and model fitting. Several
forecasting frameworks in short-term load and electricity price forecasting utilize a single
estimator due to recalibration and computation power constraints. It is evident that newly
proposed models in this research space are rarely compared in terms of their
computational requirements and their deployment in real world applications could be
uncertain due to the tradeoff between computation time and cost [16]. It is worth
considering that complex standalone estimator structures and robust combinatorial
approaches may offer marginally better forecasts but the overall benefits from this
application may be lower than the execution cost of the model on more powerful systems

when appropriate computational power is available. Additionally, recalibration constraints
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may have an impact on model selection in this forecasting horizon since new data could be
sampled within short time intervals. Therefore, models need to be executed fast in order
to reflect the changes in the output based on newly received batches of samples. On the
other side of the spectrum, combinatorial modeling typically utilizes copies of the same
estimator structure or several different estimators in order to provide more accurate
forecasts. Combinatorial modeling is a core component of short-term load and price
forecasting approaches as novel approaches in this space could adapt better to a wider
range of scenarios and appropriately answer more complex research questions as the
learning process becomes more intricate. Given the previously discussed constraints and
challenges, combinatorial approaches offer performant alternatives that reinforce
prediction accuracy through the simultaneous processing of the same dataset or the partial

processing of different data segments [17].

The output of the forecasting framework could denote the estimated values of load or price
time series which are then visualized and compared to the actual values in terms of several
error metrics. However, recent load and price forecasting research does not strictly utilize
the output of the forecasting model as the final estimate since the performance of
estimators could be improved a posteriori with the implementation of meta-modeling
techniques and error refinement algorithms. In this scope, the meta-modeling module
often receives the outputs of the forecasting framework and generates a subsequent
forecasting task on the same problem formulation. When the meta-modeling technique
shares the same structure as the forecasting framework, meta-modeling approaches
function as an additional processing layer for prediction refinement. However, the
integration of meta-modeling techniques is usually coupled with several changes to the
forecasting framework. In this scenario, the main forecasting model may utilize different
versions of the given dataset in order to derive intermediate predictions of time series
features, enabling the creation of the meta-modeling input dataset. This new input dataset
may not reflect the estimated values of load or price directly, but it may contain time series
features that express clear patterns that are strongly connected to the target output
variable. Therefore, the goal of the meta-modeling approach becomes the approximation
of the target output based on the features extracted from the intermediate forecasting

stage [18].
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Lastly, the output module includes the visualization and prediction evaluation tasks that
measure the overall performance and accuracy of the model. Researchers, examine those
results in order to make insightful comments towards the enhancement of future
forecasting approaches in the energy sector [19]. Furthermore, this module could be
considered as the second stage of a posteriori processing as subsequent models could
utilize the estimated time series to extract and analyze the error component through
feedback mechanisms. After the completion of the above processes the model could be
deployed on real world applications and integrated into energy management systems.
Figure 2.1 presents the diagram of the short-term forecasting pipeline in the energy sector
after the distinction of the main modules and tasks presented in this section. The following
sections analyze each module one by one and provide a thorough presentation of the
prominent methods as well as a direct association of several challenges that could have an

impact on the performance of each process.

Figure 2.1: Process pipeline for short-term time series forecasting in the energy sector.
Solid arrow lines denote the typical flow of information from the data collection
module to the predicted output and dashed arror lines denote the meta-modeling

direction often followed in novel research projects.
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2.2 Data Collection

The emergence of new and digital technologies has enabled the development of several
energy data collection strategies for the registration and management of essential
forecasting variables such as load and price as well as several influencing factors such as
weather and geospatial data. Recent short-term forecasting models typically utilize energy
end-use time series data obtained from administrative sources, surveys, metering
techniques and generative models. These strategies could provide large amounts of data
to researchers for the study and development of effective energy policies as well as the
optimal control of energy demand. Consequently, the data collection module is an integral
part of short-term forecasting methodologies in the energy sector since the quality of the
available dataset often determines the level of processing that will follow and the level of
accuracy that is expected from a model. Therefore, it is important to highlight the most
prominent sources and processes involved in energy end-use data collection for research
purposes, denote the main advantages and disadvantages for each one and evaluate the
impact of these approaches on the output datasets. Figure 2.2 presents the categorization
of data collection approaches and the following subsections analyze each strategy,

providing an overview of widely used practices [20].

Figure 2.2: Data Collection Methods

2.2.1 Administrative Sources
Time series features collected from administrative sources are often provided by

governmental entities, agencies operating at a national, state and local level, energy

utilities and energy market participants. These datasets often include detailed statistics for
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energy consumption, price and several macroeconomic parameters at high volumes and
flexible sampling rates. The data is typically stored in databases and made available through
websites and published reports. Therefore, the datasets utilized in forecasting
methodologies are often obtained through direct access, data mining techniques and web

crawling approaches.

It is evident that there are several significant advantages in the collection of energy data
through administrative sources. First, the storage of data in databases and the inclusion of
a wide range of parameters for each record enables fast and cost-effective retrieval while
ensuring higher quality standards. Time series samples are protected against duplicates
and the overall higher data granularity enables more complex querying, hence boosting the
interpretability of features. Second, time series collected from administrative sources could
provide better population coverage since the participating entities have the resources to
monitor the energy activity of a wide range of consumers and the usage of several building
types. The advanced monitoring capabilities of those organizational units coupled with the
potential for real-time simultaneous data collection from multiple sources through the use
of modern web crawling tools often result in the extraction of feature-rich datasets that
capture complex relationships within the client bases. These datasets are suitable for a
wide range of forecasting tasks depending on the sampling rate and could be utilized by
several different studies for the examination of a plethora of events in the energy sector.
Moreover, since that data is provided by established sources in the energy domain, the
validity and integrity of the data is reinforced when compared to other open access

alternatives and synthetic datasets.

On the other side of the spectrum, several disadvantages and challenges could be
associated with data collection based on administrative sources. It is made clear that the
resulting datasets may not always satisfy the needs of a specific research question directly
as the features and the records may be defined differently in order to meet the needs of
the providers. Therefore, several processing steps may be necessary for the data to be
rendered suitable for forecasting models. This process may slow down research output
significantly as a thorough data exploration is needed. Client and building identification as
well as feature association could be difficult challenges since the diversity of registration

formats leads to inconsistencies in data linking. Furthermore, access to those datasets
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could be difficult and more time-consuming since bureaucratic procedures may be involved
for the approval to utilize and modify the data for research purposes. Additionally, third
party data providers may consent to the use of datasets but the presentation and access of
that data through published work may still be limited or restricted. Consequently, research
utilizing those datasets could lead to irreproducible results and conclusions that may not
be easily traceable, hence imposing more restrictions on future research efforts due to that

lack of transparency [21].

2.2.2 Surveys
Surveys could be conducted for the collection of energy data in order to capture consumer

behaviors and patterns valuable to energy demand management. Survey-based
methodologies could be divided into two commonly used types, the production and
consumption surveys. Production surveys primarily focus on energy supply and gather
information about fuel receipt, generation, production and shipment. Consumption
surveys gather end-use energy consumption data from different types of clients and
buildings in order to cover several use cases, such as the examination of residential or
industrial load patterns throughout the year. Survey design focuses on the designation of
the optimal type and frequency of data as well as the selection of an appropriate target
group in order to extract unique and unbiased samples for each use case. Additionally, the
selection of an effective sampling method coupled with a robust validation and
dissemination strategy could be considered for the development of an insightful survey in
the energy sector. Surveys could be conducted through the traditional paper-based
guestionnaires and interviews or through more modern methods such as website forms

and smart phone applications.

The utilization of surveys could be beneficial towards the collection of energy-related
features and the organization of robust short-term forecasting datasets since there are
several arguments that denote the positive impact of surveys in this research space. The
flexibility of structure and the increased availability of survey methods result in cost-
effective data collection processes that could target specific research questions and follow
the research scope closely. Since the overall scope of surveys tends to be relatively narrow,
data selection becomes more efficient. Moreover, the types of questions answered in

surveys lead to a more natural interpretation of energy data that could boost the predictive
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performance of forecasting tasks after additional processing. Features extracted in the
form of linguistic variables or numerical values that could be mapped to different feature
states enable the utilization of fuzzy logic approaches for the interpretation of relationships
through the derivation of fuzzy rules. Therefore, survey features could be used directly as
the input of certain forecasting approaches or serve as complementary data that boosts

the interpretability of more complex models.

Surveys add significant value to the data collection module but there are several drawbacks
that need to be outlined in order to fully understand the role of these methods. First,
surveys could require a higher amount of available resources and well-trained staff in order
to guarantee high quality data. Since those prerequisites are not always disclosed in the
final endpoint where survey data becomes available to researchers, this uncertainty could
impact the overall interpretability of research efforts. Second, there is uncertainty
surrounding the content of survey responses as some survey questions may remain
unanswered or receive incomplete and biased responses from the population. This results
in datasets that may contain missing values and sometimes noisy data, requiring further
processing in order to extract suitable features. Furthermore, sampling errors such as
duplicate records are more likely to occur in survey data since the first layer of record
registration and storage may not be as robust as the one utilized by administrative sources.
Lastly, survey data may have access restrictions based on data policies regarding data

protection, hence resulting in limited data availability for future research tasks [22].

2.2.3 Metering
Metering methodologies are becoming increasingly popular approaches for data collection

in the energy sector as technological advances enable the use of sophisticated
infrastructures that are capable of measuring large volumes of energy data. Metering
approaches rely primarily on smart devices such as smart meters, sensors, lighting and
plugs in order to extract features related to electricity consumption, consumer patterns as
well as several influencing factors such as environmental and weather data. Metering data
is utilized in a plethora of forecasting studies since the integration of these types of
equipment results in granular measurements that are suitable for direct use in short-term

and very short-term forecasting tasks. These methodologies could contribute towards the

53

Institutional Repository - Library & Information Centre - University of Thessaly
21/05/2024 20:51:15 EEST - 3.145.11.99



enrichment of survey and modeling datasets, providing a detailed view of dynamic and

evolving environments through the extraction of time series.

The contribution of metering methodologies and their role in energy end-use data
collection processes vary depending on the type of metering equipment. The integration
of smart devices such as smart appliances, reinforces the concept of the Internet of Things
and leads to the extraction of real time information, contributing towards the thorough
understanding of consumer patterns. Smart devices provide direct feedback to energy
applications and management systems as well as indirect feedback for the development of
billing strategies and energy audits. Furthermore, smart meters enable the measurement
of electricity and gas related features, resulting in the efficient aggregated tracking of
energy demand. It is evident that smart meters record large volumes of data and often
expose user characteristics that could be exploited by certain models. Therefore, storage,
security and privacy risks need to be addressed for optimal smart meter data collection.
Moreover, wireless sensor networks, smart thermostats and smart lighting contribute
towards direct metering methodologies that collect environmental features and track
heating and cooling parameters. The examination of influential variables such as
temperature, humidity and light intensity is crucial for the development of robust
forecasting models since they support the estimation of load and contribute towards
improved decision-making. Lastly, smart plugs provide a simple data collection pipeline
that involves consumption and voltage measurement through hardware and data

organization through a management platform.

Moreover, it is worth mentioning that there are several challenges and drawbacks in
metering data collection methods. First, the high cost of equipment and maintenance often
limits the implementation of large-scale infrastructures. Consequently, the resulting
datasets often target the consumption patterns of smaller groups of clients and monitor a
limited set of buildings. Additionally, the datasets produced by sensors and smart meters
often have high storage and processing requirements, rendering some short-term data
analysis tasks infeasible due to the lack of computing power and the difficulty of deriving
results within short time intervals. However, technological advances in the energy sector
should lead to more cost-effective solutions for infrastructures that utilize metering

devices, resulting in the large-scale utilization of smart meters and the availability of
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resources for big data processing. Furthermore, advances in distributed computing could
address the computational burden of sensor data through the development of
decentralized models. Second, the quality of the resulting dataset is not guaranteed as
there is a possibility to encounter missing values and noisy features due to data
interruption, corruption and interception risks. Therefore, quality assurance criteria need
to be examined before the datasets are made available for research and energy

applications in order to reinforce reliability [23].

2.2.4 Generative Data Collection
Short-term forecasting tasks in the energy sector often require large amounts of data in

order to study specific use cases and analyze the complex dynamics of energy systems and
energy markets. Since the required features that address a specific research question need
to be strictly defined within the research scope, the data provided by most well-known data
collection methodologies needs to be suitable for the formulation of the research problem
and contain a sufficient number of samples for the development and validation of robust
forecasting models. However, several third-party data collection processes follow policies
that may limit or restrict data access, contributing towards the scarcity of suitable datasets.
Additionally, the available data provided to researchers in the energy sector may not
always follow ideal data collection processes, resulting in poorly structured datasets that
contain a low number of samples. It is also worth noting that when smaller datasets are
considered for specific forecasting tasks due to their high compatibility with the research
scope, the need to perform larger scale tests for the examination of scalability often
requires dataset expansion. Therefore, generative data collection methodologies are
utilized in order to address the challenges surrounding the overall difficulty of obtaining

high volumes of suitable high-quality data.

Generative approaches mainly rely on models and simulations in order to increase the
number of samples from an existing dataset, combine smaller datasets cohesively and
generate data approximations for a given research task when no data points are provided.
Modeling methodologies typically receive an input dataset and based on a set of
assumptions; multiple processing cycles generate output samples. This type of generative
data collection is often utilized for the expansion or combination of smaller datasets since

the required set of assumptions associated with the data distribution and time series
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characteristics could be easily derived from the smaller sets of samples [24]. Simulation
processes typically generate datasets based on a set of parameters that denote the initial
state of the environment under study as well as its evolution over a specified period of time
[25]. It is evident that simulations add significant value to data collection since they could
produce high volumes of data without the need of an initial input dataset and offer more
flexibility in energy research. Researchers could explore a plethora of scenarios through
simulations given the deterministic process that sets the parameter values, resulting in
faster and more robust experiments. Moreover, hybrid approaches combining modeling
and simulation structures could provide increased flexibility in the selection of input and

the finalization of environmental parameters.

A hierarchical categorization of generative approaches based on the type of input data
utilized in these data collection processes distinguishes two types of methodologies, the
top-down and bottom-up methods. The top-down methods utilize aggregate features in
order to produce more samples through the estimation of energy variables such as the
energy demand, whereas bottom-up methods utilize disaggregated input [26]. Since
aggregate input features may not express the behavior of the individual components of a
system accurately and disaggregated input data may not always comply to all general
restrictions of the system simultaneously, the generated output samples may contain
inconsistencies as the target generated feature values may be overestimated or

underestimated.

The generation of samples for the creation, extension and combination of datasets involves
several risks that could have an impact on the performance and integrity of forecasting
models. First, it is clear that modeling and simulation approaches operate through the
execution of several processing stages in order to provide readily available data that could
easily be integrated in relevant research tasks. Therefore, the quality of the data is directly
dependent on the accuracy of the processing tasks. Additionally, the availability of the
generated samples is dependent on the complexity and the response time of the models.
These dependencies indicate that suboptimal and poorly designed processing tasks could
negatively impact the generated samples, compromising the quality of the output dataset.
Furthermore, it is worth noting that the development and implementation of a robust

processing pipeline is a time-consuming task that could delay research output. Second, the
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dependency of the modeling approaches on data assumptions and the dependency of
simulations on environmental parameters require expert knowledge and a thorough
examination of edge cases in order to reinforce reliability. These dependencies introduce a
level of uncertainty since the studied environments in the energy sector are dynamic and
rapidly evolving. Lastly, transparency and traceability risks could emerge and have an
impact on the integrity and reproducibility of research projects due to the intricacies of
processing tasks. Therefore, research on the field should include a comprehensive overview
of the processing tasks utilized for data generation in order to reinforce the clarity of the

presented work.

2.3 Processing

The processing module is one of the most important components of short-term time series
forecasting approaches in the energy sector since the dataset needs to be appropriately
prepared for model training. The dataset derived from data collection methodologies
needs to be compatible with the data format of a studied model in terms of structure and
address all model requirements for optimal performance. Additionally, the dataset needs
to include useful features that are relevant to the studied research questions and could
boost forecasting accuracy. Therefore, in this section we examine the primary tasks
involved in time series processing for forecasting tasks and discuss about their impact on
the research pipeline and the respective challenges that may arise. The following
subsections present an overview of data cleaning, feature representation, data splitting,
transformations and feature engineering approaches since these are the prominent tasks

executed in this module.

2.3.1 Data Cleaning and Feature Representation
The datasets derived from data collection methodologies may include missing values,

duplicate data points and errors depending on the quality standards of the data collection
process. It is often observed that the datasets made available for research in the energy
sector have undergone a data cleaning process at the source in order to boost data quality
and reduce the effects of erroneous samples, however this process could also be executed

by the researchers if the dataset is still poorly structured.
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2.3.1.1 Missing Values

Missing data and missing components of aggregate features could be detected and omitted
from the initial dataset for simplicity or could be replaced with more useful samples
through data imputation. When the missing rate is low, typically below 5%, the deletion of
missing data may not have a significant impact on dataset quality [27]. On the other side of
the spectrum, data imputation is preferred when the missing rate is high since the datasets
would be incomplete and the task of learning consumption or electricity price patterns
would not be possible. Therefore, several data imputation methods were developed and
used frequently towards the improvement of energy time series datasets. One of the
simplest categories of data imputation methods attempts to replace the missing samples
based on information available in neighboring samples. These approaches could utilize
simple duplication strategies in order to carry the last observation forward or the next
observation backward. Alternatively, when ranges of past and future neighboring data
regions are considered, interpolation techniques based on linear and nonlinear structures
could be utilized to impute missing values. Furthermore, robust neighbor-based imputation
methods take into consideration the aspect of local similarity and based on extensive
examination of similar data points through well-known clustering approaches such as K-
nearest neighbors and DBSCAN they update missing values with the mean value of similar
neighbors. Moreover, constraint-based imputation methods attempt to discover
dependencies and rules between samples in order to form a set of constraints that could
regulate sample replacement. These constraints could be derived from similarity and
distance metrics as well as graph structures and networks. This category of methods could
be accurate and time-efficient but could also be restrictive at a larger scale since the
constraints may not reflect the entirety of dynamics found in real world consumption and

energy market datasets [28].

Efficient data imputation could also be achieved through learning-based methods since
several subcategories could be identified featuring robust models. First, the subcategory of
statistical methods often utilizes traditional data fitting approaches as well as rolling
statistics and the use of mean value in order to derive suitable data points considering
historical and future data regions. Second, regression models utilize historical data and

neighboring data points in order to formulate forecasting models for the prediction of

58

Institutional Repository - Library & Information Centre - University of Thessaly
21/05/2024 20:51:15 EEST - 3.145.11.99



missing values. More recent learning-based approaches utilize neural networks for the
development of more sophisticated data imputation models. The most prominent neural
network structures used for this task are the multi-layer perceptron, generative adversarial
networks and several recurrent neural network architectures coupled with the gated

recurrent unit model (GRU) for the processing of long-term data dependencies [29].

Alternatively, methodologies utilizing collaborative filtering could also be useful for data
imputation since matrix decomposition models could extract features from the original
dataset and based on correlation metrics reconstruct the original data matrix by
completing the missing values [30]. Furthermore, expectation-maximization methods
could be applicable to data imputation tasks since new data samples that fit the original
data distribution could be derived from the iterative tuning of model parameters at the
maximization step [31]. It could easily be observed that more powerful data imputation
processes could lead to the development of time-consuming strategies that may include
the formulation of subsequent forecasting tasks. Therefore, execution time should be an
additional concern for short-term and very short-term forecasting pipelines as model
recalibration could become slower when new samples that include missing values pass

through more complex data imputation structures such as deep recurrent neural networks.

2.3.1.2 Erroneous Data

Apart from missing values, data cleaning methods address the challenge of erroneous time
series data through several types of error correction algorithms in order to derive less noisy
series with fewer outliers. The selection of error correction method depends on the type
of erroneous data and it is possible that multiple methods could be utilized simultaneously
towards the improvement of the dataset. Time series datasets typically include continuous,
single point and translational errors. Continuous errors refer to abnormal values in multiple
consecutive data points. This type of error typically occurs due to noise or malfunction of
metering equipment. Additionally, supporting features such as geospatial data could
exhibit continuous errors due to interruptions in data transmission or partial data
corruption. Single point errors refer to isolated data points that have a small or large
distance from the true value. These errored samples could be identified as outliers since
they may not follow the patterns in the time series. The existence of continuous and single

point errors is common in energy time series surrounding the study of load and electricity
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price since the study of consumption reflects the potential instabilities of the smart grid as
well as the dynamic client habits and the study of electricity price reflects the volatile
nature of energy pricing due to several phenomena such as renewable energy penetration
and energy market dynamics. Lastly, translational errors could occur due to the poor
alignment of timestamps, resulting in a suboptimal arrangement of features since sample

values within the same row may not correspond to the same timestep for every feature.

There is a significant overlap between missing value data imputation methods and
erroneous data processing approaches since the improvement of the time series data
depends on the optimal replacement of samples. Therefore, prominent error value
cleaning methods could be classified as smoothing-based, constraint-based, statistics-
based or in the wide category of anomaly detection algorithms. Smoothing-based methods
attempt to reduce noise through low frequency filtering, moving average and
autoregressive processes. However, the application of these methods is not extensive since
the risk of data distortion after smoothing could lead to increased confusion and
uncertainty in model formulation. Constraint-based methods focus on the detection of
several types of dependencies in order to derive rules that could refine the values of
samples. These dependencies are typically detected from the order of samples, the value
difference in consecutive data samples, the speed of value changes and the temporal
structure denoting causative and dependent behaviors. Furthermore, statistical
approaches often include maximum likelihood estimation, Markov models, binomial
sampling and probabilistic models for the discovery and examination of patterns in
historical data, resulting in the estimation of values that could optimally replace specific
samples. Moreover, anomaly detection algorithms utilize a plethora of learning structures
such as long short-term memory networks, generative adversarial networks and
autoregressive moving average models in order to identify and repair data abnormalities
of sequences as well as standalone samples. Lastly, dynamic programming and distance-
based clustering approaches are utilized towards the mitigation of translational errors and

the optimal alignment of features [28].

2.3.1.3 Feature Representation
The structure of features and the way they are presented within a dataset could provide

significant benefits to data exploration, research problem formulation and forecasting
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model design since the clear representation of time series variables and the detailed
description of influencing factors reinforce interpretability and could contribute towards
the efficient discovery of patterns. Optimal feature representation techniques shift the
complexity from the forecasting framework and the individual model to the examination
of features. In the energy sector, this is an important task for most forecasting models due
to the complex dynamics that exist in smart grids and energy markets as well as the wide
set of influencing factors that affect client consumption. Consequently, two main
categories of feature representation methods could be identified. The first category refers
to contextual representation methods that attempt to alter existing features and introduce
new ones in order to enrich or compress the contents of a dataset, following the
specifications of the research task closely. The second category refers to structural
representation methods that mainly alter existing features in order to accommodate the
assumptions and the computational path of specific forecasting models. Both categories
are valuable for data processing and it is evident that a combination of techniques from
those representation method sets is typically utilized before further feature processing

tasks are executed.

Contextual feature representation methods operate as preliminary feature engineering
and selection layers in order to expand or shrink the available feature space in ways that
increase the compatibility of features with the scope and goals of the research task. Feature
representation methods focusing on feature space expansion typically include
disaggregation, fuzzification, statistical and temporal enrichment. Disaggregation
techniques are primarily utilized for the decomposition of existing features into more
detailed components. These methods commonly apply unsupervised learning methods as
well as edge detection to general consumption data in order to isolate appliance features
and denote events in the studied environment. Additionally, fuzzification techniques could
be applied in order to generate a new set of linguistic variables from an existing feature.
Fuzzification is suitable for features that describe nondeterministic quantities with
uncertainty such as influential weather variables. The resulting fuzzified features describe
the degree of membership that maps the original value to the linguistic variables, boosting
the overall interpretability of the dataset [32]. Furthermore, statistical and temporal

enrichment describes the process of feature space expansion through the inclusion of
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additional statistical and temporal variables extracted from the original dataset. This simple
process typically involves the calculation of rolling statistics such as rolling mean and the
inclusion of lagged variables that could describe load or price historical data at different
time steps. It is worth noting that temporal enrichment could also refer to the inclusion of

simple time variables extracted from timestamps such as the hour or the day [33].

On the other side of the spectrum, feature space shrinkage may be necessary in some
forecasting tasks since low dimensional datasets containing fewer features that summarize
the factors affecting the target variables concisely may result in simpler and easily
interpretable models. Contextual feature space shrinkage typically includes aggregation
tasks. Aggregation approaches utilize simple mathematical models, statistical methods and
unsupervised learning algorithms in order to summarize features given a specific research
direction [34]. For example, total demand and price forecasting tasks as well as client group
consumption analysis often require the summation of load or price features from multiple
sources and the organization of clients into distinct groups based on their common

characteristics.

Structural feature representation methods focus on alternative dataset organization
approaches such as time series encoding and some dimensionality reduction techniques in
order to derive an equivalent dataset structure that describes existing variables differently
based on assumptions and observations. These methods attempt to increase the
compatibility of the available dataset to the studied forecasting structure without
significant compromises in data quality. Encoding techniques exploit existing structural
characteristics of some feature types in order to derive more detailed representations that
express a more accurate mapping of those features to time series data. Prominent
approaches in time series encoding are one-hot, cyclical and radial basis function encoding.
One-hot encoding typically targets categorical influencing factors and time-related
information for the introduction of dummy variables that have specific values only in the
rows where the mapping of the sample to the variable is valid. Consequently, the
introduction of those sparse features may lead to reinforced interpretability and
robustness when compared to the original non-sparse representation [35]. Cyclical
encoding methods acknowledge the continuity of some variables and transform them

utilizing trigonometric functions such as sine and cosine. This transformation could clearly
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expose periodic patterns in an easily interpretable way that could simplify the training of
some forecasting models [36]. Radial basis function encoding methods utilize distance
metrics in order to derive curves that denote the closeness of each sample to a specific
value, providing the model with clear relationships of the features to crucial reference
points [37]. The role of dimensionality reduction techniques in the feature representation
stage remains simplistic since complex transformations that reduce the shape of features
typically need to be applied after data splitting in order to use only the training data as
reference. Therefore, dimensionality reduction methods in this scope extend the main
principles of aggregation tasks through the inclusion of compression and vectorization

strategies that could boost pattern visibility [38].

2.3.2 Data Splitting
An important step in dataset processing is the implementation of data splitting strategies

since there are several benefits contributing towards forecasting model robustness and
evaluation fairness. Two main data splitting directions can be identified in forecasting tasks
in the energy sector. The first direction refers to data splitting for the purposes of model
training and evaluation given general design guidelines for optimal forecasting. The second
direction refers to problem-specific data splitting in order to derive several datasets that

could be processed separately from the same forecasting framework.

Training and evaluation oriented data splitting approaches are mandatory in most
forecasting tasks in the energy sector since they express the general learning procedure
where a model receives a specific set of samples that are considered as known data in order
to tune its parameters in a way that when new samples considered as unknown data are
given as input, the predicted output of the model is close to the actual values in that
unknown data segment. Therefore, data is typically split in a training set, a validation set
and a test set. The training set represents the known data segment given to the forecasting
model for pattern discovery and initial parameter learning. The validation set represents
the unknown data segment used for the optimization of estimator parameters. Lastly, the
test set represents the unknown data segment utilized for estimator performance
evaluation. This data splitting process is often executed before any data transformations
and feature engineering techniques are applied. Consequently, feature processing

methods that aim to alter the properties of a dataset are applied based on training data
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samples in order to eliminate bias. Short-term time series forecasting tasks in the energy
sector often require several years of historical data for model training and utilize the most
recent years of data samples as unknown data for parameter tuning and performance
evaluation. The dataset is split based on a specified splitting ratio. The most commonly
used ratios in the literature split the data 80%-10%-10%, 70%-15%-15% or 60%-20%-20%
for training validation and test sets respectively. It is worth mentioning that many
methodologies in this research space unify the validation and test sets. This unification
leads to the identification of distinct model evaluation strategies such as holdout validation
and cross-validation that will be analyzed further in the examination of the forecasting
framework and the output module since the processing module focuses on the role and

structure of the training module [39].

Problem-specific data splitting approaches are applied on the training, validation and test
set equivalently in order to derive several smaller datasets of explicitly specified
dimensions. Data splitting approaches in this scope often address research tasks that utilize
load data from different types of clients and electricity prices from different sources. The
main goals of those methods are to create well-separated datasets that could be passed to
the same model or to several different models within a forecasting framework in order to
estimate the values of target variables partially or to provide different output
representations depending on the structure of the input. Consequently, clustering
algorithms such as k-means are utilized for the segmentation of the dataset based on
distance metrics. This data segmentation could enable diverse and localized data
processing and feature enrichment techniques as the unique characteristics of each data

segment could be exploited for performance improvement [40].

2.3.3 Data Transformations
The separation of data into a known training segment and unknown validation and test

segments enables a series of impactful transformations that optimize and rescale the input
based on the manipulation of time series properties for efficient processing in the
forecasting framework. These transformations are applied to the training data segment
and the unknown data segments are subsequently transformed based on the
transformation principles of the training set in order to avoid bias and data leakage.

However, transformed input data samples lead to the derivation of transformed predicted
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output samples that need to be reverted back through the application of the inverse
transformation for performance analysis. Additionally, it is evident that some research
efforts may utilize only a small number of data transformations based on model
requirements or no transformations in order to minimize the impact of processing
performance benefits while isolating the forecasting structure for performance evaluation.
Therefore, while there is a large set of data transformations for time series data that could
be suitable for forecasting tasks in the energy sector, there are only a few prominent
methods that are utilized situationally. The most widely used methods discussed in this
section include power transformations, differencing techniques, standardization and

normalization.

It can be observed that due to the complexity of consumption patterns and the occurrence
of seasonal trends in load and electricity price observations, energy datasets may include
non-stationary features as the mean and variance shift over time. Consequently, the
available data may not follow a normal distribution and the overall instability caused by the
increased variance values could affect the performance of some statistical and machine
learning forecasting models. As a result, power transformations could be utilized in order
to stabilize variance and reinforce clarity in feature correlation analysis [41]. These
transformations apply a set of power functions that attempt to nullify the effects of the
trend based on the function that best explains the shift in variance. For example, the effects
of quadratic trends could be stabilized through a square root transformation and
exponential trends could be reduced or removed through a logarithmic transformation. In
this scope, it is worth mentioning that the box-cox power transformation utilizes the
exponent lambda (4) as a decision variable in order to detect the appropriate power
transformation for a given time series y, resulting in an optimal approximation of a normal

data distribution through the formula:

A_ 2.1
Y =] %0 -

log(y) if1=0

The impact of trends and seasonality that render time series data non-stationary could also

be addressed through the utilization of differencing transformations that help stabilize the
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mean values. Differencing methods calculate the differenced time series by subtracting an
observation at a past time step t — n from the current observation at timestep t. Since the
timestep denoting the previous sampling interval is typically utilized for the calculation of
the differenced series, n usually takes the value of 1. However, the value of n depends on
the temporal structure as well as the problem formulation. Furthermore, differencing could
be applied multiple times when the trends are nonlinear in order to eliminate any
instabilities that may still persist. The inverse operation involving the addition of the
previous observation is applied when the predicted series needs to be converted to the
original scale for performance evaluation [42]. Given the observed value of the time series
at time t denoted as y(t) and a previous observation y(t — n), the differencing term at

time t denoted as dif f (t) can be defined by the formula:

dif f(£) = y() —y(t —n) (2.2)

Energy datasets usually contain time series features of different units with values at
different scales. Therefore, these independent variables may not contribute equally to
regression analysis tasks and could lead to biased predictions as they may follow different
distributions. As a result, the performance of models that assume a normal feature
distribution such as linear regression and support vector machines could be affected
negatively. Standardization is the suitable data transformation method that could provide
a solution to this problem since the time series features are modified to have a mean value
of 0 and a standard deviation of 1, following the behavior of a standard normal distribution
[43]. Given the mean value u and standard deviation value o of time series features with
values denoted as x(t) at timestep t, the standardized time series values denoted as stx(t)
could be calculated through the formula:

stx(t) = x(t) —u (2.3)

Moreover, in scenarios where the data distribution may not be known and the contribution
of features is affected by their value range, the scale of time series could be adjusted in
order to accommodate the assumptions of some machine learning methodologies such as

neural networks that require an appropriate data scaling strategy for the effective usage of
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activation functions. Consequently, the normalization task is applied in order to transform
the data and bring all samples within a common value range. Typically, the preferred range
for data scaling is between 0 and 1. This process is applied to the training set and based on
that scaler, the remaining validation and test sets are transformed accordingly [44]. Given
the values of time series observations denoted as x(t) at timestep t as well as the minimum
and maximum values of the features denoted as min(x) and max(x) respectively the

normalized values nrx(t) could be calculated through the formula:

x(t) — min(x) (2.4)
max(x) — min(x)

nrx(t) =

2.3.4 Feature Engineering
Feature engineering tasks expand on the principles of feature representation and feature

transformation processes in order to derive new features, select the most appropriate ones
for a given model or modify existing ones in an attempt at finalizing the input dataset based
on the properties of the training data. These tasks focus more on the improvement of
prediction accuracy and convergence time of the forecasting model and could be utilized
for the development of a research project based on the low-level inspection of the
forecasting framework. Three categories of prominent feature engineering tasks are
presented in this section. The first category refers to feature decomposition approaches
since the component-wise analysis may benefit the forecasting performance of some
models. The second category refers to feature projection techniques since the mapping of
the feature set could expose specific characteristics that may be valuable for training or
provide solutions towards dimensionality reduction, resulting in faster convergence times.
Lastly, the third category refers to feature selection tasks that evaluate the significance of
features and derive a set of the most important ones for the prediction of the target

variable.

2.3.4.1 Feature Decomposition

Feature decomposition approaches focus on the extraction of recurrent and non-recurrent
time series components. Recurrent time series components in the energy sector mainly
consist of the average value of load and price, increasing and decreasing trends as well as

short-term cycles repeating throughout the year that denote a seasonal pattern in
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consumption, electricity transactions or other influencing factors such as weather data. The
primary non-recurrent component considered in this decomposition refers to noise that
could be present due to irregular events and poor data quality. Alternatively, the average
value of the time series including any random fluctuations that could occur due to the effect
of noise could be treated as the residual component which denotes the values that remain
after the extraction of the trend and seasonal components. These components could be
processed individually for robust estimation or utilized for parameter tuning and model
selection. Decomposition approaches mainly consider an additive or multiplicative
relationship between the components. Additive decomposition is suitable for datasets
where a change in the average value of the series for a specific time period is not
proportional to the variation exhibited in the trend and seasonal components. When the
variation of trend and cycle are proportional to the time series level, a multiplicative
decomposition is preferred. The formulation of a purely additive or multiplicative time
series decomposition method is usually preferred for simplicity. Given a specific time
period t, a time series y;, a seasonal component S;, a trend component T; and the residual
series R;, classical additive and multiplicative decomposition could be formulated through

the respective equations:

Ve =S:+T: + R, (2.5)

Ve =S¢ X Ty X R, (2.6)

However, additive and multiplicative relationships between components could coexist. This
phenomenon coupled with the need to control how fast each component changes and
handle outliers efficiently lead to more decomposition methods that extend the knowledge
of the classical additive and multiplicative approaches such as the Seasonal Extraction in
ARIMA Time Series (SEATS), the X11 and the Seasonal and Trend decomposition using Loess
(STL) methods [45].

2.3.4.2 Feature Projection
Feature projection techniques focus on the derivation of alternative time series

representations that contribute towards dimensionality reduction and efficient context-
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dependent decomposition while improving the efficiency of time series clustering
approaches and enabling the application of sophisticated feature selection methods at a
subsequent step. One of the most prominent methods in this research space is principal
component analysis (PCA) which is utilized for the extraction of low-dimensional dataset of
uncorrelated components that maintain a high percentage of the variance found in the
original data. This method utilizes an orthogonal transformation in order to map a high-
dimensional dataset to a smaller set of components through the examination of the
variance-covariance matrix. The algorithm of PCA was modified to accommodate several
time series forecasting tasks in this research field and several other alternative methods
focusing on different aspects of feature engineering were subsequently developed [46].
Piecewise Vector Quantized Approximation is an equally important technique in time series
dimensionality reduction as it provides a symbolic representation of time series through
the mapping of sequence segments based on distance metrics. This method could also
enhance similarity analysis and clustering tasks for robust feature selection [47].
Furthermore, methods such as the t-stochastic neighbor embedding (t-SNE) are adapted to
time series in order to visualize datasets containing consumption or price data from
multiple customers at a low dimensional space and validate the efficiency of time series
clustering before the data is passed to the forecasting model [48]. Time series clustering
results could also be enhanced through the Uniform Manifold Approximation and
Projection method (UMAP) by providing a topological data representation strategy [49].
Moreover, Singular Value Decomposition (SVD) could be utilized for dimensionality
reduction as well as separation of random effects that could cause noise for further

examination [50].

2.3.4.3 Feature Selection

Feature selection methods utilize importance metrics and visualization techniques in order
to reduce the total number of features and derive the set of the most significant ones.
These techniques reduce the dimensions of the dataset and could lead to improved
forecasting performance as features that could have a negative impact on the training
process and the generalization capabilities of a model are not included. For example, short-
term load predictions could benefit from the detection of important environmental

features such as temperature and electricity price predictions could be improved if the
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exogenous variables directly connected to price volatility such as fuel costs and system load

are included in the input dataset.

It is evident that several dimensionality reduction techniques discussed in the previous
section as well as clustering methodologies contribute towards the selection of impactful
features. Methods that focus on the mapping of features to a low dimensional space such
as PCA could provide insightful information towards the identification of important
features through the examination of coefficients used to combine the dataset columns.
Higher coefficient values denote increased importance of the candidate features.
Additionally, clustering methodologies reinforce feature similarity through distance
metrics and focus on the inclusion of features that match a set of criteria while removing
less relevant columns. These methods provide an indirect quantification of feature

importance that depends heavily on data structure.

On the other side of the spectrum, modeling methodologies and importance scores provide
a more direct quantification of feature significance and result in the straightforward and
simplified understanding of the data that could subsequently lead to a better
understanding of the forecasting model. Importance thresholds are defined based on
research assumptions and performance expectations. The features that are connected to
weights or importance scores below the specified thresholds are eliminated. Since short-
term forecasting tasks in the energy sector utilize supervised machine learning regression
techniques, the coefficients of those models could be used as direct indicators of feature
importance. Therefore, widely used feature selection strategies involve fitting a simple
model such as linear regression on training time series samples in order to derive the
weights that denote the significance of each feature. Additionally, decision tree-based tasks
adapted to regression methodologies could be utilized for importance evaluation and
feature selection since importance scores could be extracted based on the reduction of the
criterion that evaluates the quality of decision rules leading to splits in the structure.
Consequently, simple decision trees, random forest models or more sophisticated
stochastic gradient boosting algorithms such as XGBoost could retrieve feature importance
scores. Generalizing the process of deriving importance scores leads to the implementation
of permutation techniques that could utilize any model as the base structure and given a

variable combination of features, the importance scores are derived from the iterative
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performance evaluation of the model. Permutation approaches enable the development
of highly complex model structures but the size of the feature set and the training time of
the model impose restrictions in terms of time complexity that could render these
approaches infeasible for short-term forecasting pipelines. More robust feature
importance methods typically utilize a combination of simple models and derive the

optimal set of features based on the cross-examination of importance scores [51].

Furthermore, influential features could be selected through the examination of causality.
Statistical hypothesis tests such as the Granger causality test take into consideration the
evolution of time series variables and attempt to express a causal relationship between
features under the principles that a causal series happens before the feature that expresses
the effect and the causal series contains unique and useful information about the effect
series. The examination of causality as a feature selection technique is valuable to short-
term forecasting methodologies in the energy sector since the interpretation of events that
could cause fluctuations in the target variables of load and price could be clearly identified
through a smaller set of features [52]. Additionally, an equally important criterion that
contributes to optimal feature selection is the quantification of similarity. Since the
regression tasks that are based on data extracted from diverse customer sets and different
building types is often clustered before forecasting, distance metrics could support the

identification of the features that are more closely connected to the target variable [53].

Time series datasets in the energy sector may contain influential factors that are not
derived from the target series as well as features that represent the target series at a
previous time step, known as lags. The previously discussed feature selection tools could
have general applications on all types of features. However, the examination of correlation
is often considered as one of the most prominent processes for time series feature
selection when lagged series are included in the dataset. Correlation denotes the type of
association between two variables as positive, neutral or negative, depending on how the
values of those variables change. Positive correlation denotes a change in the same
direction for both features, neutral correlation denotes the absence of relationship as the
values of the variables change and negative correlation indicates that the values of the
variables change in the opposite direction. The detection of significant correlation between

an influential feature and the target variable could be valuable for the improvement of
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model performance as the inclusion of this feature could strengthen the expression of
patterns and relationships in the data. However, correlation between independent
influential factors could be an indicator of multicollinearity, leading to unreliable
forecasting performance. Consequently, some features may need to be eliminated in order
to avoid this risk. Correlation could be used to study linear relationships in time series
features under the assumption of a normal distribution and the absence of outliers through
the calculation of Pearson correlation coefficients. These coefficients could be calculated
based on the covariance cov and the standard deviation o of the features [54]. Therefore,

given variables X and Y, the Pearson coefficient p.,.s is calculated as follows:

cov(X,Y) (2.7)
ox X Oy

Pcoerf =
Moreover, the study of nonlinear relationships based on data that may not follow a normal
distribution could be conducted through the calculation of the Spearman correlation
coefficient s¢o.rr that considers the covariance and standard deviation of the rank r of
values in each feature [55]. This alternative correlation coefficient is calculated based on

the formula:

cov(ry,1y) (2.8)

S =
coeff Ory % Oy

The values of the coefficients range from —1 to 1 with —1 denoting perfect negative
correlation and 1 denoting perfect positive correlation. The study of correlation could
provide significant insights in the examination of lagged time series features. The
autocorrelation plot is utilized in order to present the correlation values for the time series
at different time steps and a confidence interval is specified, denoting that correlation
values outside of its boundaries are statistically significant. The autocorrelation denoting
the relationship between a time series feature and a shifted version of this series at a prior
time step contains the direct correlation between them as well as the indirect correlations
that could occur due to intermediate time steps. This information could be complex and
for the purposes of feature selection the isolated correlation between the series and the

lagged version may be needed in order to form the decision to keep or eliminate the lagged
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series from the feature set. Therefore, the partial correlation could be calculated and
plotted in order to examine this relationship [56]. These computations and visualization
techniques contribute towards more robust statistical and machine learning models since
regression tasks in the energy sector typically include lagged series for the target variables

of load and price in the feature set.

2.4 Forecasting Framework

The forecasting framework is the core module of every forecasting process since it is the
main component for model design and development. This module includes the selection
and implementation of forecasting algorithms as well as several processes for the tuning of
hyperparameters and the optimal training of the models based on known observations.
The estimated target variables are provided as the output of this module for interpretation,
performance evaluation and subsequent processing. The forecasting framework structure
depends primarily on the decision regarding the forecasting philosophy followed for the
resolution of a specific research task. This decision influences the model selection as well
as the tuning and the training process. In the energy sector, several approaches utilize a
single forecasting algorithm in order to derive short-term predictions of load and price and
continually attempt to explore different “what if” scenarios. Through this exploration,
researchers seek to improve the performance of this standalone structure through several
modifications that are connected to parameter values and changes in modeling
assumptions. Alternatively, research efforts could utilize a combination of forecasting
methodologies in order to derive more reliable and highly performant models at an
increased structural complexity. As a result, a plethora of standalone and combinatorial
models that have a statistical and artificial intelligence background are applied to a wide
variety of research tasks contributing towards the evolution of this research area and
providing efficient solutions for the prediction of important energy related variables.
Therefore, in this section an analytical discussion of standalone and combinatorial
modeling approaches presents the prominent statistical and artificial intelligence methods,
the main goals of each structure as well as their respective challenges and limitations.
Additionally, an overview of prominent hyperparameter tuning techniques follows this

analysis since it is necessary to present the methodologies that could optimally handle the
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parameters of a forecasting structure towards the exploration of alternative scenarios and

subsequent error reduction.

2.4.1 Standalone Modeling
Standalone modeling approaches focus on the design and implementation of a centralized

forecasting structure that features a single estimator which processes the input dataset.
This structure could include a set of parameters that may be tuned in order to optimize the
performance of the forecasting structure globally and the output typically describes the
estimated target variable since there is a direct flow of information that connects the
training and evaluation process to the estimated values. Short-term forecasting in the
energy sector utilizes standalone modeling in order to derive baseline models for
benchmarking or optimized models for applications that involve more versatile and
modular feature processing methods. Since standalone models follow a single forecasting
algorithm, they are more reliable in terms of training time, rendering them suitable for
applications with strict time constraints. Additionally, standalone models often follow a
simple structure that could reinforce the interpretability of a forecasting task as well as the
reproducibility of research results since implementations and comprehensive experiments
could be easily available through several research efforts. Standalone forecasting models
could be organized into the two main categories of statistical and artificial intelligence

models which could be further analyzed in the following subsections.

2.4.1.1 Statistical Forecasting Models

Statistical forecasting models refer to traditional parametric and non-parametric
methodologies that attempt to capture and interpret linear and nonlinear relationships
through averaging techniques, time series decomposition and regression analysis. These
approaches were developed based on simple yet powerful mathematical concepts that
could lead to satisfactory short-term time series predictions without requiring a restrictive
amount of computing resources. The most prominent sets of methods utilized in short-
term energy forecasting are exponential smoothing, moving average and regression

estimators.

Exponential smoothing methods primarily rely on the formulation of weighted averaging
techniques that utilize an exponential decay mechanism in order to convey the decreased

impact of time series lags as the time window between the studied series increases. This
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category of methods often explores core time series components such as trend and
seasonality in order to derive a suitable smoothing technique. When trend and seasonal
components cannot be easily detected, a naive approach is usually adopted where future
observations at timesteps t + n have the same value as the current observation at timestep
t and the model focuses on the most recent observation as past observations do not
provide any information about the future. Therefore, any forecasted future observation
could be expressed as an average of the current observation where every term has equal
weights. This is an edge case that sets the basis for exponential smoothing approaches.
Expanding on this concept, the smoothing parameter a could be defined within the range
of 0 and 1, denoting the level of smoothing increase when the value of the parameter is
small and smoothing reduction when the value is large. [57] Following this step, the
exponential decrease of the weights that could express the decreased impact of past
observations for the point forecast of the next observation J;,qr, given the smoothing
parameter, the total number or observations T as well as the first fitted value [, could be

calculated through the formula:

=1 _ (2.9)
Veryr = z a(l—a)yr_j+ (1 —-a)'l,
=0

While simple exponential smoothing could be effective when no clear trend or seasonal
patterns are detected, several extensions of this model cover different scenarios where a
specific type of trend or seasonal component could be detected. Consequently, the Holt
linear trend method could be utilized when only an additive trend could be detected and
the additive as well as the multiplicative variants of the Holt-Winters methods could be
utilized when an additive or multiplicative seasonality is present given the detection of an
additive trend [58]. These methods introduced trend and seasonality equations featuring
additional smoothing parameters 5, v in order to regulate the level of smoothing for those
components. Additionally, damped versions of those methods were developed in order to
stop the indefinite increase or decrease of the trend for future observations. In the energy
sector, an exponential smoothing approach utilized for load or electricity price forecasting
is typically modelled as a linear or quadratic curve. The values of the smoothing parameters

as well as the initial fitted observation could be tuned for performance optimization in
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order to derive lower error metrics. Exponential smoothing methods perform well for point
forecasts but depending on the forecasting task, these algorithms could be extended in
order to output estimated intervals. Therefore, state space models could be developed
from the smoothing equations after the definition of a measurement equation that
represents each observation as the addition of the previous smoothing level with an error
term, the formulation of a state equation that represents the adjustment to the smoothing
level and the derivation of the probability distribution associated with the error. The
performance optimization of those state space models could be achieved through error
metric minimization as well as likelihood maximization techniques. Since the state space
models are configured differently based on the type of trend and seasonality exhibited in
the time series, information criteria such as the Akaike information criterion (AIC) and the
Bayesian information criterion (BIC) could be utilized for the selection of a suitable

configuration [59].

An equally important set of statistical methodologies refers to statistical regression
approaches where the target variables could be expressed as a linear or nonlinear
combination of features. Linear models constitute the simplest regression approaches that
attempt to find the line of best fit given training data points through the derivation of
optimal coefficients that describe this feature combination. The method that sets the basis
for those approaches is linear regression [60]. According to this method, the predicted
value y(w, x) could be expressed through p + 1 coefficients w; and p number of features

x; with the formula:

Jw,x) =wy +wixg + -+ wpx, (2.10)

The coefficients are calculated with the goal to minimize the residual sum of squares
between the actual and predicted values, solving an ordinary least squares (OLS) task that

has the following objective function:

min||Xw — |3 (2.11)

It is evident that feature independence is crucial for linear regression forecasting since

feature dependences could result in higher error sensitivity due to the effect of
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multicollinearity. Several variations of the baseline linear regression model were developed
in order to address a wide spectrum of challenges towards optimal forecasting. Ridge
regression attempts to provide a more resilient solution towards the challenge of
multicollinearity through the introduction of the penalty term allw||% on the size of the
coefficients adjusted by a positive complexity parameter a that regulates the level of
shrinkage. This penalty term is added to the main objective function and reinforces the
robustness of the algorithm. As a result, the value space of the coefficients is restricted and
extreme values occur less frequently. Furthermore, lasso regression attempts to derive
more sparse solutions through the derivation of fewer non-zero coefficients. This approach
reduces the number of influential features utilized in the derivation of estimated values. A
penalty factor based on a constant a denoting the degree of sparsity and the [;-norm of

the coefficient vector ||w||; transforms the main objective function as follows:

_ 1 (2.12)
min — || Xw — y|I5 + allwl|,
w 2nsamples

Moreover, Elastic Net regression is an equally important linear regression method that
shares the coefficient sparsity of lasso as well as the regularization properties of ridge
regression. This method applies [; and l,-norm regularization for the calculation of
coefficients in order to derive a more stable model that could select multiple correlated
features for the estimation of the output values. Consequently, given the degree of sparsity
parameter a as well as the ratio parameter p that controls the convex combination of [;

and [,-norm regularization, the objective function is transformed as follows:

_ 1 a(l-p) (2.13)
min—— || Xw — y||5 + ap|lw|; + ————

w3
w 2nsamples 2

Since short-term forecasting in the energy sector often utilizes high-dimensional data, Least
Angle regression could be utilized in order to provide robust estimations through the
iterative refitting of residual values, producing a piecewise linear solution path. This
method follows the intuitive approach of adjusting the coefficients in order to reflect
correlation equality between influential factors when it occurs and performs similar to

forward selection regression methods [61]. However, noisy output could occur as the
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residual values are fit due to carrying an error term at each iteration. It is worth noting that
probabilistic methods such as Bayesian regression could contribute significantly to the
development of statistical forecasting techniques since more adaptive models that
consider the distribution of the data and the effect of regularization parameters could lead
to robust predictions [62]. Consequently, variations of previously discussed models such as
ridge regression could adopt the Bayesian framework in an attempt at improving prediction

accuracy.

From the formulation of linear regression, it could be observed that the features x; could
represent independent influential factors as well as past values of the target variable.
Therefore, the subcategory of regression models utilizing the shifted load or electricity
price time series as input features refers to autoregressive methods. These models could
set constraints on the values of coefficients in order to perform well with stationary data.
Replacing the general feature notation with the given lagged time series and including a

white noise term &;, autoregressive models of order p could be expressed as:

Ve =Wo+Wiye g+ WYy + & (2.14)

Alternatively, some regression models could utilize past forecast errors as input features in
order to predict future values of energy related variables. These models are described in
the literature as moving average models and the formula denoting the structure of a
moving average model of order g could be easily derived from the replacement of the

lagged time series features from the previous equation with error features ¢; as follows:

yt == WO + ngt—l + -+ qut—q + gt (2.15)

Depending on the processing and feature selection techniques utilized, the regression
model could combine differenced past forecast features y;_; and error features &;_; in
order to derive an autoregressive integrated moving average structure (ARIMA) that
predicts the differenced time series for the target variable. The formulation of the ARIMA
model could be derived from the separation of coefficients into the autoregressive weights
@; and the moving average weights 8;. Since the resulting model integrates the concepts

of differencing, autoregression and moving average, the definition of the model depends
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on the parameters denoting the autoregressive order p, the degree of differencing d and
the moving average order gq. As a result, the ARIMA(p,d, q) model is defined by the

formula:

Ve =Wo+ @1Yiq + o+ QpViop + 0181+ + 05 g + & (2.16)

Since time series data in the energy sector exhibit seasonal patterns, ARIMA models could
be extended to include seasonal terms involving lagged time series for the seasonal period.
The seasonal terms are typically multiplied by the non-seasonal terms. The definition of a
seasonal ARIMA model extends the previous notation by adding a set of autoregression,
differencing, and moving average parameters for the seasonal terms with capital letters as
well as a parameter m denoting the number of observations per year. Therefore, a seasonal

ARIMA model is defined as ARIMA(p,d, q)(P, D, Q),, [63].

2.4.1.2 Artificial Intelligence Models

It is evident that statistical approaches may become limited in terms of scope as the
datasets become richer and the patterns within a studied environment become more
complex. Additionally, the performance of more traditional estimation processes is often
limited by initial assumptions and constraints on the behavior of the data. Therefore, more
intuitive and flexible approaches for short-term forecasting in the energy sector could
result in the thorough understanding of patterns as well as higher prediction accuracy.
These models stem from the field of artificial intelligence and belong to the classes of
machine learning and deep learning. Machine learning estimators introduce an algorithmic
computational structure for the prediction of core energy time series and deep learning
estimators expand on that structure through the integration of multiple additional
computation layers that could process larger datasets more efficiently. Machine learning
and deep learning estimators utilize sophisticated learning processes that focus on the
efficient calibration of a model to the input and the approximation of functions that define
relationships between the input features and the target variables. These types of models
focus on the evolution of regression tasks and typically belong to the supervised learning
subcategory since labeled datasets are processed for the estimation of load or electricity

price. It is worth mentioning that the supervised learning subcategory includes some
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structures suitable for classification tasks such as decision trees and support vector

machines that could also be adapted to regression problems.

A simple and efficient approach for regression tasks utilizes the stochastic gradient descent
(SGD) algorithm that attempts to learn the linear regression function through the
minimization of the regularized training error, given a loss function L, a regularization term
R that functions as a penalty factor with regards to model complexity and a positive
hyperparameter a that denotes the strength of regularization [64]. This is a versatile
estimation method since the parameters utilized in the calculation of the regularized
training error could be changed in order to express different mathematical structures.
Consequently, depending on the regression task, there are different options for the loss
function that are connected to other regression methodologies such as squared error for
linear regression, epsilon-insensitive for support vector machines and modified Huber.
Additionally, several options for the regularization parameter are available including the [1
and [2 norm as well as the elastic net regularization. The SGD regression algorithm is
iterative and often utilizes an inverse scaling schedule determined by a learning rate
parameter r](t) that could be calculated given the initial learning rate eta, and the
exponent power_t as follows:

® _ _¢t% (2.17)
n = tpower_t

Alternatively, the algorithm could utilize a constant learning schedule considering only the
initial learning rate or an adaptive schedule that gradually decreases the learning rate when

the stopping criterion is reached, until it becomes lower than a specified threshold value.

Support vector machines (SVM) are prominent short-term load and price forecasting
methods since they enable efficient high dimensional data processing and provide a flexible
nonparametric structure. Models utilizing the SVM algorithm attempt to map data points
to a high-dimensional space through the use of kernel functions in order to search for the
hyperplanes that separate them optimally. The data points or vectors closest to those
hyperplanes are known as support vectors. Therefore, the main goal of this approach is to
maximize the distance between the support vectors and the hyperplane. It is evident that

this objective is mostly suitable for classification tasks. However, SVM could be adapted to
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predict continuous output through the search for the line of best fit within the threshold
set by the distance between the data boundary line and the hyperplane. The optimization
problem of SVM methodologies could become simpler through the Lagrange dual
formulation, providing a lower bound to the initial problem. Given N input observations x,,
as well as the nonnegative Lagrange multipliers a, and ay, the function f(x) utilized for

predictions in the linear SVR regression approach could be defined through the formula:

N (2.18)
)= (an—a3) (tn-2) +b

n=1

The nonlinear version of the SVR regressor considers the nonlinear kernel function G (x,, x)
that defines the transformation which maps observations to a high-dimensional space [65].

The prediction formula for nonlinear SVR regression is the following:

N (2.19)
fG) =) (an = a3) G, 2) + b

Moreover, an equally important set of classification methodologies adapted to regression
tasks utilize decision trees as the main forecasting structure. The tree structure contains
the root node that denotes the best predictor variable, decision nodes that correspond to
each feature and leaf nodes. Decision nodes could contain several branches that represent
the values of the feature. Leaf nodes represent the decision output. The decision tree
algorithm considers the entire set of observations at the root node and attempts to split
the datasets into smaller segments through a top-down greedy search approach that
focuses on standard deviation reduction. The goal of this approach is to find the features
that return the highest standard deviation reduction, resulting in the most homogeneous
branches. The first step of this algorithm calculates the standard deviation of the target
variable. Following this step, the initial dataset is split on different features and the
standard deviation for each branch is calculated and subtracted from the standard
deviation before the split to derive the reduction value. The feature with the highest
standard deviation reduction value is chosen for the decision node and a segmentation of

the dataset occurs based on the values of this feature. This process continues recursively
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for all branches until the leaf nodes are formed. It is evident that loss functions such as
squared error and mean absolute error could be utilized for the evaluation of split quality
[66]. Additionally, it is worth mentioning that the performance of this method depends on
several structural parameters such as the maximum depth of the tree, the minimum
number of observations for node splitting, the minimum number of observations at a leaf
node and the maximum number of leaf nodes. Depending on the dataset dimensions and
the complexity of feature relationships, the resulting size of the decision tree could include
longer computation paths, resulting in longer total execution time. Several robust
estimation approaches utilize a number of decision trees in a unified model in order to
improve forecasting accuracy. One of the most prominent decision tree-based algorithms
in short-term load and price forecasting is the extreme gradient boosting method
(XGBoost). This algorithm utilizes several regression trees, following an iterative training
process where new trees are predicting the residual errors of previous ones. The combined
output of those structures forms a standalone differentiable loss function that could be

minimized through the gradient descent algorithm [67].

Lastly, neural network models form one of the most flexible and robust categories of
standalone artificial intelligence estimators since they follow parametric approaches in
order to execute complex computations for function approximation. This class of
estimators perform a series of computations on the input features in order to determine
core learning parameters such as weights and biases. The computation path is typically split
into several stages where the transition from the output of one stage to the input of the
next one is controlled by activation functions. Neural network approaches follow several
adaptive structure types and contribute in different ways when short-term forecasting

tasks in the energy sector are considered.

The first type of neural network structure features computation paths that utilize sets of
neurons organized in layers while forming directed acyclic graphs. Each neuron receives a
set of inputs and translates them into the output through a series of computations and
passing the resulting data through the activation function. These computations typically
describe the output as a weighted sum of the inputs. The class of feedforward neural
networks utilizes this structure in order to process linearly and non-linearly separable data

and detect useful patterns for robust estimation. One of the most prominent methods in
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this neural network class is the multilayer perceptron (MLP). This fully connected neural
network structure is a powerful estimator that utilizes an input layer, several hidden
computation layers and an output layer. Multilayer perceptron could be utilized as a
standalone machine learning estimator for smaller datasets when only a small number of
hidden layers is selected or as a deep learning model for larger datasets when more hidden
layers are included. This approach is flexible since the vectorized input of MLP does not
have restrictive requirements with regards to data representation. Therefore, data
representation and computation flow are problem specific and highly customizable,
rendering the MLP as the template model for many forecasting tasks in the energy sector.
However, the fully connected structure of MLP could result in training issues such as
overfitting and the lack of explicit methods for pattern simplification could result in
structures that are difficult to interpret as the complexity of the studied environment
increases. Short-term time series forecasting tasks in the energy sector could study
dynamic and evolving environments where a wide set of parameters may be needed for
effective modeling. As a result, the global examination of the environment through the MLP
structure would consider the full set of parameters, forming a shallow network that is

generally difficult to interpret [68].

Convolutional neural networks (CNN) are often applied to short-term load and price
forecasting in order to address some of those challenges and provide simpler pattern
interpretations through a hierarchical processing approach. This category of feed forward
neural networks was primarily utilized for image processing tasks, but the potential of
processing data sequences as one-dimensional arrays led to the adaptation of the CNN
structure for time series forecasting. The structure of CNN focuses on the local examination
of data regions since each neuron is connected to an input segment. The receptive field of
each neuron denotes the spatial extent of this connection that is expressed through
convolution. Itis evident that CNNs could be considered as the regularized version of MLPs
since they introduce more compact methods towards pattern simplification that are
directly connected to a hierarchical data representation. The structure of CNNs introduces
several layers and concepts that contribute towards the efficient regularization and
processing of time series data. First, the utilization of convolution layers as the main

computational approach enables more flexible management of influential data points.
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These layers could be dilated, resulting in a sparsely populated receptive field that could
allow the processing of more historical time series samples. Additionally, CNN models could
utilize filters in order to discard time series properties that could hinder forecasting
performance such as noise and create meaningful a data mapping strategy that maintains
important patterns while reducing data dimensions. Moreover, the CNN structure includes

some mechanisms that could prevent overfitting such as weight decay and dropout [69].

The second type of neural network structure features computation paths that form loops
in order to process data sequences based on information stored in previous states. These
approaches utilize feedback mechanisms and their internal memory in order to exhibit a
temporal dynamic behavior. The class of recurrent neural networks (RNN) utilizes this
structure in order to make decisions based on the current input as well as information from
previous training steps. One of the most prominent methods in the RNN class is the long
short-term memory network (LSTM). This model extends the concepts introduced in the
RNN structure in order to describe long-term time dependencies and address training
challenges such as the problem of vanishing gradient that could prevent the weights of the
network from changing values. LSTM architectures follow a block structure that represents
the computational units used to derive each state of the network. Each block includes a set
of gates that control the information that enters a computation block, denoting the data
that will be omitted, the necessary data updates to the current state and the data that will
be passed to the output and subsequently used as the input of the next block. This gated
block structure improves upon the base RNN principles since it introduces explicit and
robust ways of data control. LSTM networks add value to short-term load and forecasting
since the target interval may often be influenced by time series lags that describe long-

term dependencies [70].

Moreover, the wide application of the LSTM architecture in sequence prediction led to the
development of several variants that highlighted different aspects of this neural network
approach and reinforced the flexibility of those models in time series forecasting. The gated
recurrent unit (GRU) is an alternative gated block structure that operates similarly to the
LSTM. However, GRU models feature fewer gates since the processing tasks only consider
the information that needs to be transferred to the next state and the information that

needs to be neglected based on the importance of the previous block. Consequently, GRU
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models could result in faster computation when compared to LSTM due to the simpler
gated structures, but they do not include an internal memory and may be less effective as
longer sequences are processed. Furthermore, alternative structures could emerge from
the adoption of different information flow strategies and the implementation of structural
modifications that address more complex forecasting tasks. Therefore, the implementation
of a forward and a backward processing layer that leads to the development of a
bidirectional LSTM estimator could contribute towards the thorough understanding of
complex seasonal patterns. Additionally, the inclusion of several layers of LSTM blocks
results in deeper stacked LSTM estimators that could derive improved forecasting accuracy
when deep learning tasks in the energy sector are considered. The LSTM and GRU
architectures are suitable for the design of deep learning estimators since the
hyperparameters that determine the amount of processing blocks and the types of
activation functions for each gate could be configured in order to develop deeper neural

network models [71].

2.4.2 Combinatorial Modeling
Standalone estimation approaches usually offer fast and satisfactorily accurate load and

price predictions within short forecasting intervals, rendering them as suitable components
for benchmarking and baseline formulation. However, model assumptions, structural
limitations and irregular parameter behavior could impact the processing of complex
energy datasets negatively, resulting in unstable, suboptimal and less interpretable
predictions in several short-term forecasting scenarios. Therefore, more robust estimators
need to be introduced as the evolution of the research area focuses on the development
of sophisticated approaches that could result in improved accuracy, flexibility and
modularity. These approaches typically combine standalone estimators as building blocks
and often enhance the forecasting structure with the inclusion of traditional machine
learning concepts such as fuzzy logic and more recent methodologies such as the attention
mechanism while maintaining the same goal of predicting the values of the target variable
in the output. Therefore, this section details the role of the most prominent categories of
combinatorial modeling in the energy sector through an overview of ensemble learning

methodologies, fuzzy-supported regression approaches and encoder decoder structures.
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2.4.2.1 Ensemble Learning

The class of ensemble learning algorithms contributes towards the development of robust
estimators that combine several standalone statistical and artificial intelligence learners in
order to derive lower error metrics and improved prediction stability. The development
process of an ensemble learning method includes the model selection and model
integration subprocesses. In the model selection subprocess, a set of estimators is
generated or selected based on arbitrary or deterministic strategies. These estimators are
members of the ensemble that are utilized in order to predict the target variables from the
given energy data. At this stage, an optional model elimination subprocess could be applied
in order to reduce the estimator set and include the most impactful models for the
forecasting task. In the model integration process, the set of base estimators follows a
combination strategy in order to optimally derive improved forecasts. The set of estimator
members could be diverse, utilizing different types of estimators or homogeneous, utilizing
similar models or the same estimator structure. Diverse ensemble sets focus on the
performance improvement achieved through the complete discovery and interpretation of
patterns and relationships, while homogeneous ensemble sets focus on performance
benefits derived from the correction of erroneous predictions through the utilization of

input, output, parameter and induction manipulation techniques.

The most prominent ensemble methodologies utilized in short-term time series forecasting
in the energy sector refer to stacking, bagging and boosting models. Stacking estimators
pass the output of ensemble members to a subsequent regression model in order to learn
the optimal combination of forecasts. This approach evaluates the impact of each
participating estimator and derives a prediction that reflects the joint contribution of the
ensemble set, resulting in robust generalization [72]. Bagging and boosting ensembles find
wide application in research tasks where the standalone models such as neural networks
and decision tress would yield unstable performance due to irregular events or structural
intricacies in the dataset. Bagging methodologies fit ensemble members on random data
subsets that encapsulate all the characteristics of the original series and subsequently
aggregate the results through voting or averaging strategies. These methods focus on the
reduction of variance and could be easily parallelizable for efficient computation [73].

Lastly, boosting methods build an ensemble model incrementally through the sequential
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training of estimator members in order to reduce the bias of the participating models [74].
As a result, the focus of boosting methods is shifted towards the iterative performance
improvement in the prediction of observations that exhibited higher error in previous
instances. Ensemble learning sets the foundation for meta-modeling approaches since it

introduces the concept of multi-stage regression.

2.4.2.2 Fuzzy-Supported Regression

Fuzzy logic principles and, by extension, fuzzy inference systems could be integrated in
short-term load and price estimation models in order to reinforce interpretability and
improve training performance in terms of convergence time and accuracy. The most
prominent contributions of fuzzy logic in this forecasting framework are the analysis of
influential features that exhibit a degree of uncertainty in linguistic terms, the extraction
of a rule base that thoroughly describes feature relationship within the studied
environment and the fuzzification of model parameters. Feature fuzzification and the
development of fuzzy rules offer enriched a priori knowledge to forecasting models for
more informed decisions. Additionally, the fuzzification of model parameters could address
the uncertainty that occurs during the training process when fewer historical observations
are available or when the datasets contain missing values. Therefore, the preliminary task
of feature fuzzification in the forecasting pipeline is often coupled with a rule base

generator in order to form a combinatorial fuzzy regression structure.

Combinatorial fuzzy regression structures could integrate statistical as well as neural
network models for the development of robust estimators. Statistical approaches such as
ARIMA, typically utilize fuzzy logic principles in order to fuzzify the estimated coefficients
that describe the contribution of features [75]. Neural network models often adopt several
fuzzy system characteristics in order to enhance the learning process and utilize the
knowledge provided by the rule base. It is evident that since neural networks often follow
a black-box approach that is difficult to interpret, the fuzzification of influential features as
well as the utilization of a compact set of rules before, during and after the learning process
could simplify function approximation. This complementary role of fuzzy rules supports the
relationships of historical observations and serves as a prototype training template. Neuro-
fuzzy systems typically follow a fully connected layered structure that includes three types

of layers. The first layer receives the input features, the second layer proceeds with the
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extraction of fuzzy rules and the third layer focuses on the representation of the estimated

values for the target variables.

Two categories of fuzzy neural network structures are usually utilized for regression tasks
in the energy sector. First, the cooperative fuzzy neural network includes a neural network
structure and a fuzzy system that operate independently [76]. In this architecture, the
neural network learns the necessary parameters from the fuzzy system through an offline
or online learning process depending on the methods utilized for fuzzy set definition and
fuzzy rule integration. Prominent learning processes based on fuzzy rules utilize clustering
on self-organizing maps and weight strategies for rule importance. Second, hybrid neuro-
fuzzy networks utilize a homogeneous structure involving a neural network and a fuzzy
system where the units of the network represent the fuzzy rules and the weights in the
learning process are modeled as fuzzy sets. This structure operates under the principles of
fuzzy controllers since the resulting neural network is regarded as a fuzzy knowledge base.
Additionally, several hybrid approaches utilize the previously described systems to form
more complex forecasting pipelines where the cooperative or concurrent operation of this
structure is determined based on heuristics [77]. The main point of focus in fuzzy regression
modeling is the construction of an optimal rule base. Since the models are deployed for
short-term load and price forecasting tasks, the rule base needs to be accurate in order to
address the intricacies of the studied environment and relatively small in order to ensure

faster training and model recalibration.

2.4.2.3 Encoder-Decoder Estimation

The class of recurrent neural network models offers some robust standalone LSTM and
GRU estimators that predict data sequences efficiently through the processing of time
dependencies. An extension of this class introduces the combinatorial encoder-decoder
structure for performant time series predictions in deep learning tasks. This model consists
of three main components, the encoder, the context vector and the decoder. The encoder
could be represented as a recurrent neural network that receives the input sequences in
order to learn a mapping that converts the sequence to the context vector. The context
vector contains encoded time series information derived from the final hidden state of the
encoder. This information could also represent the initial hidden state of the decoder for

accurate decision making. The decoder could be represented as another recurrent neural
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network that derives the final forecast from the analysis of the context vector. This model
could be a useful tool in the processing of series that have variable length and alignment.
Consequently, the consumption features of several types of clients could be studied more

efficiently as the client base evolves through time [78].

Furthermore, it is evident that the target variables of load and electricity price are often
described by long input sequences containing influence factors and lagged values from
several previous time steps. The processing of long input sequences could be resource
intensive for most neural network architectures and could result in slow convergence time
depending on the complexity of the network structure. The encoder-decoder structure
addresses those issues through the integration of attention mechanisms that enable the
decoder to utilize encoder information selectively, based on a weight strategy. This is
achieved through the assignment of importance weights to different input sequence values
and the subsequent derivation of context vectors for every time step of the decoding
process. These context vectors reflect this weighted importance mechanism since they are

calculated based on all the hidden states of the encoder.

There are several attention mechanisms that could be applied to encoder-decoder
modeling depending on the importance evaluation strategy followed by the model. The
generalized attention mechanism forms a query between each element of the input
sequence, comparing it to the output. This comparison leads to the calculation of scores
that reflect the relative importance of each input element and is utilized in order to derive
the attention weights and scale the input values accordingly. The self-attention mechanism
selects different parts of the input sequence and compares them with each other in order
to modify the output sequence. Multi-head attention considers the parallel layered
structure of attention heads formed by the iterative computation of attention weights.
Each layer processes the input and output sequence elements and derive a combinatorial
score. It is worth mentioning that powerful deep learning architectures such as the
Temporal Fusion Transformer (TFT) utilize multi-head attention in a structure consisting of
an LSTM encoder-decoder layer, a variable selection network and a gated residual network
for robust multi-horizon forecasting of heterogeneous time series [79]. Furthermore,
Bandanau attention generates a set of annotations for the input sequence at the encoder

and passes them to an additive alignment model with the previous hidden decoder state
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for the calculation scores which are subsequently normalized into attention weights. The
annotations and the weights form the context vector that could help the decision-making
process at the decoder when coupled with the previous hidden decoder state. Lastly, Luong
attention considers a multiplicative model where all the hidden states of the encoder are

considered in order to derive the context vector [80].

2.4.3 Meta-Modeling
Meta-modeling approaches focus on the improvement of generalization, stability and

accuracy through the integration of a subsequent model that processes the output of the
main standalone or combinatorial structure for the derivation of the estimated target
variables. These methodologies could utilize ensemble learning principles in order to
combine multiple output sequences through an additional forecasting strategy or
introduce feedback mechanisms aimed at prediction refinement. The main requirements
in the development of meta-modeling methods involve the shift in the scope of the core
forecasting structure and the extraction of additional information that could expose
additional properties of the output series. Consequently, the main estimator could utilize
the base feature set or different variations of the base dataset in order to derive different
representations of the output. These representations could be influenced by several
metrics and concepts such as similarity and causality. Alternatively, the main estimator
could provide a preliminary forecast that is split into different components. The
components extracted from the estimated series such as the error, often exhibit a degree
of volatility that could negatively impact the performance of the model over time. This
phenomenon could be easily visible in long-term forecasting horizons since the prediction
error is often larger but the impact of unstable estimated components should be
considered as equally important for short-term horizons since real time energy applications
that present irregular changes in consumption or price could result in uncertainty, leading
to poor decision making and lack of reliability. The estimated values of those components
are passed to a meta-estimator in order to form a feedback mechanism that derives more

stable isolated component predictions and adds them back to the original series [81].

It is evident that the research area of meta-modeling approaches is vast and evolving since
most prominent estimators could be repurposed through experimentation in order to

operate under different research assumptions and the same structures could be utilized in
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the development of the surrogate model. However, there are several challenges and
restrictions associated with the formulation of efficient meta-modeling approaches in
short-term forecasting. First, the overall complexity of model structure should be
considered since a sophisticated meta-modeling layer that shares a similar number of
parameters with the main estimator could result in slower convergence times and render
model recalibration infeasible for shorter time intervals. Therefore, simpler statistical
models such as autoregressive processes and fundamental neural network models such as
the multilayer perceptron are usually preferred. Additionally, meta-modeling design is a
balancing act that exposes the tradeoffs with regards to model selection for the main and
meta-processing layer. Research in this area should evaluate the performance impact of
each individual estimation layer and determine the need for a more complex architecture
when it is appropriate. It is commonly observed that techniques aiming at prediction
refinement utilize comparatively simpler meta-processing models since the core estimation
structure needs to have the appropriate complexity in order to learn from environment
dynamics. However, this standard practice may not always be effective as the dimensions
of the initial dataset increase. In this scenario, there is the possibility that a robust model
operating on a smaller set of estimated series derived from a simpler core model may yield
satisfactory performance metrics. Second, the total number of model parameters could

increase, rendering tuning and model selection strategies more computationally expensive.

2.4.4 Model Tuning
Most models utilized in short-term time series forecasting tasks introduce a set of

parameters that could be adjusted in order to derive optimal performance. Several
research approaches and proof of concept applications could perform a baseline model
analysis utilizing parameter values that follow the default configuration provided by the
application programming interface or a set of values derived from trial and error. However,
when more robust combinatorial and meta-modeling approaches are considered,
hyperparameter optimization ensures that the components of this structure do not exhibit

a divergent behavior on the given dataset.

Prominent hyperparameter optimization methods form search strategies that examine the
parameter space and algorithmically denote the best candidate solutions based on a set of

rules. Grid Search is one of the most common optimization strategies that exhaustively
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searches value subsets based on the performance metrics provided by time series cross
validation or holdout validation methods. Since this approach tests all the combinations
within those subsets, there could be performance issues associated with the high
dimensionality of the search space. Alternatively, Random Search could be utilized in order
to examine a random sample of parameter values derived from specified distributions [82].
This search strategy could outperform Grid Search since it operates on the reduced
dimensions of the sampled values and could be easily parallelized. Furthermore, the global
search algorithm of Simulated Annealing could be utilized as an iterative stochastic
approach for the selection of optimal parameter values since it introduces customizable
criteria and functions that could control the convergence process of machine learning
estimators [83]. Equivalently, Bayesian optimization could be considered as another
impactful global search algorithm that iteratively evaluates different model configurations
based on the probabilistic mapping that determines the transition from one candidate
configuration to the next, resulting in fewer evaluations when compared to other search
methods [84]. Moreover, evolutionary algorithms contribute towards the global
optimization of neural network models through fitness ranking and the iterative
replacement of suboptimal hyperparameters generated through the genetic operators
denoting crossover and mutation [85]. Lastly, gradient-based optimization methods could
be utilized for the selection of optimal parameters in neural network structures through
the application of the gradient descent algorithm and the definition of a hypernetwork that
generates weights for the main neural network estimator and learns the configuration that

yield optimal output [86].

2.5 Output and Performance Evaluation

The output of the forecasting structure contains estimated values for the target energy
variables examined in short-term prediction horizons. The evaluation of those values is
typically executed in three stages. At the first stage input training samples are utilized in
order to derive the output at each instance of the learning process based on known data.
At the second stage, the framework derives the estimated output from the input values of
the validation set for the purposes of parameter refinement as an internal procedure.
Lastly, at the third stage, the input values of the test set derive the test output samples for

generalization to unknown data and performance evaluation. The main strategies applied
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to those three stages may differ due to the roles of the input datasets in the forecasting
framework for training and validation as well as the output module for testing. However, a
shared set of performance metrics is usually utilized in order to denote the divergence of
the estimated from the actual values. Therefore, in this section the prominent
methodologies involved in the evaluation of the output for all stages of the learning process
are examined as well as the associated performance metrics utilized in this research area.
Furthermore, the processes involved in the training of the models are examined and

significant risks such as overfitting, underfitting and the concept of drift are outlined.

2.5.1 Performance Metrics
Functions that express the comparison between the actual time series values to the

estimated output could be considered useful tools towards the monitoring of the training
process, parameter optimization, result interpretation and performance quantification of
short-term forecasting models in the energy sector. These functions are mainly statistical
measures that describe the magnitude of error, presented as a numerical value or as a
percentage. Error direction, scale dependence and interpretability are some of the most
crucial factors that influence the categorization and selection of those performance
metrics. Research efforts utilizing energy data for short-term load and price predictions
typically attempt to minimize those metrics at the forecasting framework and the output
module since lower error metric values denote more accurate forecasts. Additionally, these
metrics are widely used for model comparisons given a specific input dataset. It is worth
noting that since the quality of the data influences those metrics, the comparison of models
needs to be conducted on the same input in order to ensure fairness. The most prominent
error functions utilized in this research space are the mean absolute error (MAE), mean
absolute percentage error (MAPE), mean squared error (MSE), and root mean squared

error (RMSE).

Mean absolute error provides an easily interpretable and natural error metric that is
indifferent to the direction of errors [87]. This metric is commonly used as a loss function
for the training of machine learning models and as a simple performance evaluation
indicator for the output. The numerical values of this metric follow the original units of the
estimated variables. This function does not interpret the impact of the relative error size as

there is a difficulty in the differentiation of error magnitude. Since optimal forecasts require
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the minimization of error, a value of 0 MAE denotes that the forecast is perfect and exhibits
no error. Given the predicted values y; and real values x; in a set of n samples, the mean

absolute error is computed by the formula:

EiLuly = xi (2:20
n

MAE =

Furthermore, mean absolute percentage error [88] is mainly used as a scale independent
performance metric since it expresses the percentage of the average of absolute
differences between estimated and actual values. This metric could provide a generalized
percentage score for forecasting models. Given the same parameters for the calculation of

MAE, MAPE is computed by the formula:

n
100 X (2.21)
wirs =105 g

n 4 Xi

i=1

Similar to MAE, this error metric does not emphasize on the impact of large errors exhibited
due to value spikes. Additionally, since the denominator in this formula contains the actual
time series value, this metric is suitable for datasets where the values of the target variables
are nonzero. It is easily observed that extreme actual values may impact the consistency of

this metric.

Moreover, the error metrics of mean squared error [89] and root mean squared error [90]
provide quadratic loss functions that measure the forecasting uncertainty while focusing
on the impact of large errors. The values of MSE could express the sum of the variance and
square value of bias, further contributing to the performance analysis of a model while
penalizing large errors more than small errors. Additionally, the values of RMSE increase
with the variance of the frequency distribution of error magnitudes, resulting in larger
values when large error values are present. Similar to MAE, RMSE values could be easily
interpretable since they share the same unit as the estimated variables. Furthermore, the
simultaneous inspection of MAE and RMSE could provide a thorough examination of error
variance. When there is a great difference between the values of MAE and RMSE, variance

in the magnitude of errors could be detected, denoting the occurrence of large errors in
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the forecast. Given the same parameters used for the computation of the previously

described error functions, the formulae for MSE and RMSE are the following:

(2.22)

(2.23)

For the purposes of this dissertation, the previously discussed performance metrics will be
utilized in the training and evaluation of the strategies proposed towards the improvement
of the short-term forecasting pipeline in the energy sector given specific scenarios where
regression is applicable. As a result, training, validation and test loss will be calculated
through those metrics for the three output stages. However, it is worth noting that while
these are the most prominent metrics, weighted variations of those functions could be
utilized in order to cover the edge case where significantly smaller datasets are selected.
Additionally, problem specific metrics could be defined in order to enhance the knowledge
extracted from the data based on the associated field, such as econometric functions and

directional performance metrics for energy price forecasts.

2.5.2 Output Evaluation Stages
2.5.2.1 Model Training

The training process at the forecasting framework could be considered as the first stage in
the forecasting pipeline where estimated output samples are generated based on known
data points. These observations are derived iteratively based on training algorithms such
as gradient descent for simple linear regression or backpropagation for neural network
structures. Since these processes are iterative, at every iteration the loss function
expressed as one of the previously discussed performance metrics is calculated. A naive
approach considers a large number of iterations for the training process with the
expectation that the loss function will converge to a small value close to zero. However,

there are several challenges associated with the training process that could have a
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considerable impact on future output evaluation stages. First, the resulting model after the
completion of the training process may not be able to capture the patterns in the data
adequately due to small training dataset size, poor data quality or low model complexity.
In this case, the model is underfitting and could be characterized by high bias and low
variance. In order to mitigate this challenge, an increase in the number of training
iterations, an increase in the number of features or an increase of the overall model
complexity could be applied. Second, the resulting model could overfit as it may learn
details and patterns associated to noise that could limit its generalization capabilities. This
behavior often occurs due to high model complexity, an increased number of training
iterations or due to the small size of the training dataset. In this scenario, high variance and
low bias are exhibited. The challenge of overfitting could be mitigated through the
reduction of model complexity, the increase in training observations and the application of
regularization strategies [91]. Additionally, early stopping mechanisms could be considered
in order to track the progress of the loss functions and stop the training process as the error

starts to increase [92].

2.5.2.2 Model Validation

The calculation of performance metrics with regards to the estimated output generated
from the validation set could be considered as the second stage of output evaluation in the
forecasting pipeline. Validation loss plays a significant role in hyperparameter optimization
since there are several strategies that influence model selection based on the repeated
calculation of this metric. The most prominent approaches in this research area include
holdout validation and time series cross-validation. Holdout validation is a simple approach
primarily used for the development of baseline models for performance comparisons or for
the evaluation of models that utilize large datasets [93]. This method is often utilized in
order to derive an unknown data segment that could be considered as the validation and
the test set simultaneously, resulting in the same value for validation and test loss.
Alternatively, this segment could be separate from the test set and contribute towards
model selection through the minimization of validation loss. Time series cross validation
considers the temporal data structure and the autocorrelation of observations by

iteratively splitting the dataset into n segments, where the first n — 1 segments belong to
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the training set and the last, most recent set, in terms of temporal order, belongs to the

validation set [94].

The combined inspection of validation and training loss could provide insight towards the
detection of irregular training behaviors such as overfitting and underfitting. When the
value of the validation loss increases and greatly surpasses the training loss, model
overfitting could be assumed. Additionally, underfitting could be observed when the values
of validation and training loss remain high, and their respective curves denote irregular
peaks and valleys. An optimal fit could be observed when validation and training loss
remain low, sharing similar values. In this scenario, validation loss could be slightly higher
than the training loss as the number of training epochs increase as the updates to model
weights become less significant. Alternatively, validation loss could be slightly lower than
the training loss when regularization and dropout mechanisms are integrated. The same
effect could be observed when the training process considers a small number of epochs
and the training algorithms perform significant updates to model weights during those first
steps. When validation loss is drastically lower than the training loss or fluctuates above
and below the training curve, representativeness issues in the validation set could be

detected [95].

2.5.2.3 Output Module

The final stage of output and performance evaluation is performed at the output module
of the forecasting pipeline where the test set is examined and test loss is calculated through
the previously discussed performance metrics. At this stage, test loss provides an indicator
for the generalization capabilities of the model on unknown data. Additionally, if a meta-
modelling strategy is applied for prediction refinement, the final output of the feedback
mechanism that improves the error is evaluated and examined in this module. Data
visualization techniques that plot the actual and predicted data points within specific time
intervals complement the error metrics and reinforce interpretability since the errors could

be directly connected to the observed differences between the two curves.

Test loss is expected to share a similar error profile to validation loss since both validation
and test sets refer to observations of future values collected after the timestamps of the
training set. Since short-term forecasting in the energy sector processes diverse time series

that may correspond to different types of clients and buildings or may express different
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price fluctuations in studies that examine combined energy market dynamics, the test loss
could increase as the model receives new data samples for prediction, leading to unstable
and suboptimal performance. This phenomenon occurs due to the challenges of data and
concept drift. These challenges denote the gradual performance degradation of forecasting
models as the distributions of the input datasets and the statistical properties of the target
variables change over time. It is evident that issues related to drift could be easily detected
when new samples are added for the recalibration of the model since the evolution of the
historical dataset could be continuously monitored through the calculation of error metrics
[96]. The detection of those challenges becomes more difficult in more complex
combinatorial models when several different datasets need to be processed by a central
estimation structure. In both scenarios, these issues could be mitigated through lagged
drift detection. The most prominent methodologies for lagged drift detection utilize
hypothesis testing, distribution comparisons, machine learning models and sliding window
approaches. Nonparametric tests such as the Kolmogorov-Smirnov test compare the
cumulative distributions of datasets and evaluate the null hypothesis denoting that the
distributions are the same. Furthermore, the population stability index (PSI) could be used
for distribution comparison as a single value indicator that denotes a small drift when PSI
is lower than 0.1, a moderate drift when PSl values are between 0.1 and 0.25 and significant
drift when PSI values are greater than 0.25. Alternatively, the repeated training of machine
learning models for the prediction of the target variable could monitor data drift through
accuracy fluctuations in the output. Adaptive windowing (ADWIN) could detect concept
drift through the definition of a fixed-size sliding window. This algorithm computes
statistically significant values for the time series such as the mean in the regions of the
sliding window and compares their difference to a specified threshold value in order to
examine potential changes in the statistical properties of the series. Lastly, drift detection
methods could calculate statistical metrics as new data is made available to the model in
order to provide a real-time drift monitoring strategy. The Page-Hinkley method follows
this approach by calculating the mean of the observed values and comparing them to a

threshold [97].
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Chapter 3 Integration of Fuzzy Logic and Hybrid Feature Importance on

the Preprocessing Module

3.1 Motivation

The design and development of the preprocessing module in short-term forecasting tasks
involves the implementation of methods that efficiently process and transform the input
dataset in order to derive the most significant features in an interpretable form. Research
in this area contributed to the introduction of methods that reduce the dimensions of the
initial dataset, focusing on the selection of the most influential factors. Additionally, feature
representation methods such as feature fuzzification and rule base construction were
outlined for the reinforcement of the decision-making capabilities in the forecasting
framework since the extraction of a set of rules could enable more intuitive time series
forecasting strategies. However, several challenges and research gaps were detected in the
development of feature selection strategies and the construction of performant rule bases.
First, it could be observed that while several hybrid feature selection approaches were
developed for the reduction of energy datasets, the space that defines combinatorial
feature selectors remains insufficiently explored since more novel strategies that perform
the cross-examination of feature importance metrics from classification and regression
algorithms could be proposed. Consequently, the introduction of more hybrid feature
selection strategies could reinforce the flexibility of the preprocessing module as the
examination of more combinations contributes towards the design and application of
preprocessing tools that could be readily available for further research and real-world
forecasting applications. Second, fuzzy rule bases may provide enhanced interpretability
and decision-making to the forecasting models but this is done at the cost of scalability,
since the dimensionality of the fuzzified features could render the extraction of rules
infeasible for short-term tasks that examine complex environments. Short-term horizons
set strict training and recalibration time requirements and the increased complexity of the
environment often results in an extended space of fuzzified influential factors where
feature processing becomes computationally expensive. Naive approaches neglect the
challenge of dimensionality and attempt to include all possible rule combinations

generated from the fuzzified features. More robust approaches propose the simplification
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of the rule base through expert knowledge, model assumptions and rule filtering, implying
that the initial set of rules will be generated and subsequent methods will be applied for
rule elimination or reevaluation. Therefore, recent research efforts do not sufficiently cover
the need for a deterministic approach that focuses on the most important influential
factors within the scope of a short-term forecasting task in the energy sector in order to
build a small and interpretable rule base that maintains the accuracy of the expanded

space.

These observations could be combined in order to highlight the need for substantial
contributions in the design of neurofuzzy systems and forecasting models that utilize a
fuzzy controller for information extraction through a rule base in order to further
understand environment dynamics. It is evident that fuzzification expands the feature set,
introducing dimensionality issues in complex environments, while robust feature selectors
shrink the feature set, mitigating performance hinderances and preserving the most
important features. Therefore, strategies that evaluate the importance of the fuzzy
antecedents with regards to the target variables could assist in the derivation of compact
rule sets, providing feasible solutions for energy applications in short-term horizons. In this
chapter, the design strategy for the development of a fuzzy controller with regards to the
electricity consumption of a residential building is presented. This research project focuses
on the improvement of the rule generation process through the integration of a hybrid
feature selector, resulting in a smaller set of rules that accurately define the studied
environment. The following sections correspond to the introduction, methodology, results

and discussion of this published work.

3.2 Introduction to Fuzzy Control System for Smart Energy Management in Residential

Buildings Based on Environmental Data

Modern energy applications often use load profiles resulting from time-series data of
electricity usage to monitor and manage the power consumption of customers efficiently
and reliably [98]. In an attempt to maintain the balance between power supply and
demand, energy consumption patterns are further processed and as a result, a plethora of
models aiming at the adjustment of customer behavior are developed. The insights

extracted from the energy data convey more interpretable trends and patterns, which can
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be used by the energy provider as a management tool for the control of distribution and
pricing. Additionally, the output of such models can be useful to customers as a
recommendation engine, helping them make more informed decisions and reschedule
their daily tasks when opportunities arise for them to participate in more dynamic pricing
plans [99]. In the past, simpler prediction and recommendation models were linear and
faced many challenges such as data dimensionality, trend detection, and uncertainty. Since
the study of residential and industrial environments requires a more detailed definition of
all the variables that contribute toward energy consumption, the energy datasets used in
modern applications often contain many important measurements ranging from appliance
consumption values to weather parameters. Consequently, the dimensions of the inputs
and outputs grow, and this could hinder the computational performance of more
traditional models, rendering the resulting energy applications less efficient [100].
Furthermore, linear models sometimes fail to capture the trends that can be observed from
the data, and the mathematical models used to describe them do not express the dynamic
and complex nature of those environments as they evolve over time. Hence, linear
forecasting models and decision-making applications yield less accurate and suboptimal
results, respectively [101]. Moreover, many input parameters used to define those
environments often have a more imprecise and uncertain meaning that is often associated
with human perception and expert knowledge. Therefore, it is difficult to fit those crisp
values in a strict mathematical model without further interpretation and achieve decent

performance [102].

Solutions to some of the challenges mentioned above can be found in the fields of machine
learning and fuzzy logic. Traditional machine learning methods, such as decision tree
classification, are capable of achieving highly accurate and interpretable results, while
more advanced techniques such as artificial neural networks preserve the complex and
dynamic nature of those environments and assist in constructing more adaptive models
with impressive performance. Fuzzy logic methods tackle the challenges of uncertainty and
partial truth in decision-making systems, since the environments are processed in a more
interpretable way with the introduction of linguistic terms that express the vagueness of
human perception for input and output parameters. Since fuzzy systems are defined by

sets of rules that are close to real world expert rules, decision-making models based on
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fuzzy logic are popular due to their computational efficiency and overall simplicity [103].
The main practical advantages of using fuzzy theory can be observed from several
successful Enterprise Resource Planning (ERP) and power system control applications.
Fuzzy logic can handle the ambiguities and vagueness of qualitative factors covered by ERP
software [104]. Additionally, the stability problems of multi-area interconnected power
systems caused by nonlinearities can be resolved through fuzzy logic approaches by
approximating nonlinear models into linear sub-models [105]. Hybrid techniques utilizing
concepts from both fields such as fuzzy neural networks are proven valuable in the
development of robust energy applications due to their adaptability and their black-box

behavior [106].

However, it is worth mentioning that there are still questions, challenges, and research
gaps that arise with the evolution of those fields. Firstly, the challenge of dimensionality is
a recurring threat to the performance and interpretability of those applications and design
philosophies around feature engineering should be applied in order to isolate the features
that are more relevant and important in a particular environment. In general, modern
energy applications based on those models need to yield results within specific time
intervals with the upper limit being the time that new data would normally be measured
by smart meters in order to be considered relevant and acceptable. Therefore, systems
using highly dimensional input data could yield slower performance outside of the
acceptable time intervals. Secondly, there is a level of ambiguity that surrounds the design
process of each energy application, which is mostly related to the available knowledge and
information about the environment as well as the intended behavior of the finalized model.
For example, residential environments could be clustered together, and available expert
knowledge could extract a more generalized set of rules that is applicable to that group but
on an individual basis, expert knowledge could not always be readily available, and the
historical data as well as the behavior of each occupant could be more important in the
extraction of meaningful rules. Additionally, fuzzy logic models and machine learning
models often need to be retrained to reflect major changes in some vital parameters such
as occupancy and number of appliances. Since the environments evolve over time,
respective models need to adapt to the new data easily, because decisions and

recommendations based on outdated rules could hinder customer satisfaction.
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A thorough examination of the literature shows that there exists relevant research work
highlighting aspects of fuzzy logic and machine learning in the development of systems that
offer optimizations, management solutions, and forecasting potential in the energy sector.
In 2008, Azadeh et al. [107] presented a framework that combines fuzzy logic and a data
mining approach in order to predict electricity demand. In their work, they briefly outline
different methods of rule extraction from decision trees and offer other meaningful
comparisons of their work with modern machine learning methods such as artificial neural
networks. The same year, Lau et al. [108] presented a case study of a fuzzy logic forecasting
system in a clothing manufacturing plant, drawing optimal strategies for efficient energy
consumption forecasts in that environment. In 2015, Suganthi et al. [109] published a
useful review of fuzzy logic applications in renewable energy systems and concluded that
these models provide realistic estimates. In 2017, Emagbetere et al. [110] developed a
fuzzy prediction system for power consumption forecasts following the Mamdani
approach. Their system utilized a small set of predefined rules, and their work offered a
concise error comparison between different membership functions. Javaid et al. [111] used
Mamdani and Sugeno fuzzy systems in order to evaluate their adaptive thermostat. In their
work, the simplicity and flexibility of fuzzy inference systems is highlighted. Zhang et al.
[112] presented a fuzzy forecasting method utilizing historical data found in time series
through link prediction. Furthermore, Bissey et al. [113] developed a fuzzy logic method for
the optimization of electricity consumption in an individual residential environment, thus
allowing for the better management of appliances and for the flexibility to reshape the load
profile should that be desirable. This work is particularly important for our project, since it
shares a similar scope. In 2018, Krishna et al. [114] proposed a smart home energy
management system based on fuzzy logic with a hardware implementation that renders it
ready for installation and deployment. The impact of fuzzy reasoning on energy
applications developed for residential environments can be clearly seen in the work of
Nebot and Mugica [115], published in 2020, where a side-by-side comparison of two fuzzy
logic methodologies shows the importance of feature selection and correct identification

of the most relevant building parameters.

Machine learning and fuzzy logic methods are strongly interrelated, and relevant research

on the field reinforces the notion that one approach can benefit from the integration of the
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other. Sophisticated machine learning methods such as neural networks follow a data-
driven modeling approach that utilizes a numerical representation in order to prepare the
data for relationship induction and model inference. Since relationships between data
points are often presented as complex computational graphs, the interpretability and
flexibility of those models is poor due to the lack of a human—machine interface. Therefore,
it is easy to understand that machine learning succeeds in the statistical induction of
models from observations and data, but there are considerable difficulties when
attempting to derive conclusions from premises, models, and assumptions. Fuzzy logic
extends existing machine learning models through concepts, tools, and techniques that
introduce knowledge-based design elements and a symbolic representation of data that is
more interpretable. As a result, the logical deduction of conclusions is a significant
contribution of fuzzy logic to machine learning methods. Additionally, fuzzy systems can be
significantly improved with the integration of data-driven approaches. The development
and implementation of machine learning methods in state-of-the-art fuzzy systems could
address the potential sparsity of expert knowledge. Furthermore, the insights and data
processing techniques used in machine learning models could lead to the generation of
smaller and more accurate sets of rules while enabling future changes as the data evolves

without the continuous supervision of an expert [116].

In this study, we focus on fuzzy control systems for individual residential environments
without the contribution of expert knowledge. We believe that many interesting design
approaches can be discussed in an attempt to tackle the challenges mentioned in order to
develop intelligent systems that merge aspects of fuzzy logic and machine learning
effectively. The main purpose of this work is to present the design and implementation
process of a fuzzy energy system for an individual residential environment; the system
discovers and generates rules based on a decision tree model that integrates a hybrid
feature selection method for the choice of the most important linguistic variables. The
proposed system should be viewed as a contribution to the development of intelligent
decision-making, recommendation, and management tools in the energy sector, since the
expected output denotes the optimal energy consumption value based on environmental
parameters such as weather data. This system could be integrated into client-side

applications in order to derive recommendations that could help reschedule the daily tasks
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of consumers and minimize energy consumption within short intervals. Additionally,
electricity providers could utilize this system as a secondary management and control tool
for regulation and electricity pricing in more customizable and dynamic models that apply
to individual customers indirectly. Classification methods and load profile monitoring could
be powerful tools that contribute toward the creation of electricity plans, but the
realization that these plans are usually formed from generalized consumer patterns greatly
reinforces the need of having localized models that could help the adjustment of those
existing plans at a greater detail in an attempt to increase customer satisfaction and plan
flexibility. To the best of our knowledge, the combination of machine learning methods and
feature engineering techniques explored in this paper has not been discussed before in the
context of individual energy consumption recommendations without the availability of
expert knowledge. Therefore, we believe that our project presents a novel and intuitive
fuzzy system structure that addresses the challenges and the complexity of the residential
environment while maintaining simplicity. Section 3.3 presents a concise overview of the
design process used in the development of a fuzzy control system, and the core structure
is expanded by outlining the components of the proposed model. Section 3.4 presents the
results by providing a sample response of the fuzzy system and listing the most important
improvements when compared to a simpler variant that does not utilize a hybrid feature
selector. Finally, Section 3.5 offers a discussion of the results obtained from the design and
implementation process and identifies directions for the utilization of the system and

future work.

3.3 Materials and Methods

3.3.1 Fuzzy Control System Design
3.3.1.1 Core Structure

According to the Mamdani inference method [117] and fuzzy logic principles [118], the
fuzzy control system includes several components that form a pipeline that is used to derive
crisp output values from a given set of crisp inputs. Uncertainty and imprecision are present
and often impact on the decision-making process considerably, since people use non-
numerical information to evaluate and interpret real world scenarios. To understand the
entire design process, we explain each component of our proposed model in turn and

present the resulting algorithm of the base Mamdani system.
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In the first step of the fuzzy control system design process, the input and output variables
are selected, and fuzzy sets need to be constructed. Intuitively, fuzzy sets are regions of
data points that, to some degree, belong to a certain linguistic interpretation of a variable
given a range of values. For example, if we selected the temperature of a room as our input
variable and decided to recognize the linguistic terms “cold”, “warm”, and “hot”, a
trapezoid-shaped curve could be defined to describe the fuzzy set that corresponds to the
linguistic term “warm”. Hence, there is the need to map each crisp input value to the fuzzy
sets and receive the corresponding degrees of membership. Continuing the example above,
a specific room temperature value could yield the set of membership degrees [0.8, 0.2, 0]
denoting the real world equivalent of asking 100 people about their perception of the room
temperature and 80% of them responding with “cold” while 20% would respond with
warm. This assignment of values to membership degrees is achieved through the
membership function defined for each linguistic term, and this process is executed by the
fuzzification module of the control system. The number and types of the various
membership functions used in the system structure are chosen by the designer based on
experimentation, expert knowledge, or clustering. It is important to note that fuzzy systems
that are designed to manage complex environments focus on having a low execution time,
and consequently, the choice of three or five membership functions for a given variable is

very common [119].

The second component of fuzzy control systems is the decision-making unit, which uses a
set of fuzzy rules in order to map the input truth values to the desired output truth values.
Fuzzy rules are IF-THEN statements between antecedents and are consequently expressed
in linguistic terms. These rules utilize fuzzy operators [120] and are evaluated in parallel
using fuzzy reasoning. The evaluation of each fuzzy rule entails the assignment of rule
weights denoting their importance and the application of an implication method such as
the minimum and product, which scale the output fuzzy set accordingly. The number of
rules for a particular system heavily relies on the selection methods used, the intended
usage of the fuzzy system, and the complexity of the environment. Since the rules
constitute the basis for pattern identification, the number of rules should cover every
possible result in the output. Fuzzy systems designed to produce predictions often use a

larger set of rules to maintain high accuracy, whereas systems that focus on the regulation
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of a specific behavior or the extraction of recommendations and insights focus on the most
important subset of rules that will be applicable in each case. Furthermore, rules can be
manually constructed or generated based on the availability of expert knowledge, the
variable dimensions, and the dependencies within a system. Simpler systems that remain
static and explore a smaller input—output space usually work well with rules created by the
designers in cooperation with experts on the field. On the other hand, dynamic systems
that change and evolve over time as well as systems that handle highly dimensional
datasets use rule discovery and generation techniques. Modern fuzzy systems use a variety
of methods from the fields of artificial intelligence and machine learning such as grid
partitioning, genetic algorithms, decision trees, and fuzzy neural networks in order to

generate interpretable sets of rules [121-124].

The third and final component of fuzzy control systems using the Mamdani approach is the
defuzzification unit, where the results of the rules are combined and distilled. The
aggregate output fuzzy set of the rule evaluation step is now mapped back to a crisp set.
There are a wide variety of methods used in the defuzzification process, which can be
organized in distinct groups based on their properties. Maxima methods such as the mean
of maxima are often used in fuzzy reasoning systems in order to calculate the most
plausible result, whereas distribution methods and area methods such as the center of
gravity are increasingly popular in fuzzy controllers due to the property of continuity [125].
The simulation and calculation of the crisp output using those methods is made easy due
to various programming interfaces and libraries in Matlab (R2020b, The Mathworks, Natick,
MA, USA) and Scikit-Fuzzy that carry out these operations efficiently. Figure 3.1 presents
the core structure of a fuzzy system that contains the components analyzed above and

serves as the basis upon which we shall expand for our proposed model.

These components form the standard Mamdani fuzzy system, which will be structurally
modified to address the challenges of the use case examined in this work. The algorithm of
the standard Mamdani system used to compute the crisp output y from the crisp numerical
input X = x given a rule base of statements in the form of “IF X is A, THEN Y is B,,” where
Ay and By, are fuzzy sets appearing in the antecedent and consequent respectively that
consist of four steps. In the first step, the degree of membership of input x in the fuzzy set

Alis computed as py, (x) and the corresponding rules with positive degrees of membership
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are activated. In the second step, the fuzzy set in the consequent of each rule is truncated
at the level of the previously calculated degree of membership, forming the output fuzzy

set Uoutput k|x, Which follows the equation:

Houtput k|x(y) = min (.uBk(Y), llAk(X)) (3.1)

In the third step of the algorithm, all the truncated fuzzy sets are aggregated to provide a

single set tyamdani|x, Which can be defined by the membership function:

Hrtamaanix) = max [min (5, (), ia, ()] (3.2)

Lastly, the crisp output is calculated from the defuzzification of the fuzzy set using the
horizontal axis projection of the center of gravity of the region under the membership

function Uyamaanix in the final step.

Figure 3.1: Base Fuzzy System

3.3.1.2 Proposed Model

Following the base fuzzy system design of the previous subsection, the design of our
system, which features a decision-making unit that is enhanced by machine learning
methods, is presented. Since the target environments of our system lie within the energy
sector, and specifically the automatic regulation and management of electricity
consumption at an individual level, certain aspects of the decision-making process need to
be explored further in order to suggest fast and easily interpretable solutions. Energy data
and environmental parameters such as weather variables form time series with complex
patterns that create complex datasets that cannot be easily expressed by expert rules. It is

easy to see that different consumers living in separate buildings have different needs and
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therefore generate different load profiles based on their individual schedules and their
perception of the environment. Moreover, for the construction of the optimal
recommended consumption response to a set of weather parameters, rules need to be
discovered by a method that could easily be retrained on new datasets when drastic
changes occur in the load profiles due to schedule or major appliance changes. The
increased complexity and dynamic nature of these environments often result in larger sets
of rules due to the high number of input features. Consequently, one of the main appeals
of fuzzy logic methods, namely computational efficiency, could be hindered if no extra

processing is performed on the input features.

In order to tackle the challenges mentioned above, we divided the decision-making unit
into a feature engineering and a rule generation process, which proceed to organize rules
and feed them to the inference engine of the Scikit—Fuzzy application programming
interface (API) for evaluation. The feature engineering process focuses on reducing the
number of distinct inputs while maintaining the most important linguistic terms associated
with each input variable. One-hot encoding [126] is used in order to denote the presence
or absence of a specific linguistic term based on the most dominant fuzzy labels produced
by the membership function evaluation. The resulting state-based features are ranked
based on their importance in a hybrid feature selection system including XGBoost (1.2.1,
The XGBoost Contributors, Seattle, WA, USA) and decision tree metrics. The linguistic terms
with scores above certain thresholds are appended to a list and passed down to the rule
generation process as inputs. In this process, a decision tree classifier is constructed, and
each branch of the resulting tree is linearized recursively into a relatively small set of IF—
THEN rules. The crisp output is derived after the rule evaluation and defuzzification of
results following the Mamdani approach. In Figure 3.2, we present a diagram of our
proposed model outlining each step used to construct the rule base, and in Figure 3.3, we
include a diagram of the main use cases that could take advantage of this fuzzy system as
it was discussed in a previous section. In the following subsections, we apply this model
design on a real-world energy dataset of a building and analyze each step in more detail
while explaining all the decisions formed in order to handle that data efficiently. For the
following case study, Pandas 0.25.3 and Numpy 1.17.3 were used for data manipulation,

Matplotlib was used for visualization, and XGBoost 1.2.1 and Scikit-learn 0.24 were used
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for the rule generation and the hybrid feature selection. Scikit-Fuzzy 0.4.2 was used for the
construction of the fuzzy system. The project was written in Python 3.7.5, and the
simulation was executed on a desktop computer with an AMD Ryzen 1700X processor, 8
gigabytes of RAM, and an Nvidia 1080Ti graphics processor. The code of this project is
available on Github [127].

Figure 3.2: Fuzzy system design for optimal consumption recommendations based on

the load profile and weather data.

Figure 3.3: Potential integration of the fuzzy system as a minimum energy
consumption recommendation tool for consumer applications or as a secondary

analysis tool for provider-side adjustments complementing the load curve.

3.3.2 Dataset Overview
In order to construct a complete simulation of the proposed system using Scikit-Fuzzy, we

utilized the energy data found in [128]. This dataset contains a time series of energy
consumption and weather data of a low-energy house designed according to the passive

house certification [129] in Stambruges with a total floor area of 280 m? and a total heated
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area of 220 m2. The house has four occupants: two teenagers and two adults. The data
variables collected in this dataset consist of the appliance and lighting energy consumption,
temperature and humidity values of nine different areas inside and outside the residence,
wind speed, pressure, visibility, two random variables introduced in the original paper for
the study of regression tasks as well as date and time-related features such as number of
seconds from midnight, week status, day of the week, and a date timestamp. The energy
consumption values as well as the values for humidity and temperature were recorded by
sensors at ten-minute intervals and transmitted via Xbee radio. Weather parameters such
as wind speed, pressure, and visibility were collected from the weather station in Chievres
at an hourly sampling rate and were interpolated to produce 10-min measurements. The
dataset contains records of a 137-day time span and further exploratory analysis of trends,

feature correlation, and importance were carried out in the original paper.

For the purpose of our project, we selected the appliance energy consumption as the
output variable, since the desired behavior of our fuzzy system was the generation of
optimal energy consumption recommendations for the occupants based on environmental
parameters. As for input, we selected the local temperature and humidity measurements
for the nine areas as well as the weather variables of wind speed, visibility, and pressure,
since the perception of each feature could vary between occupants, therefore making such
features suitable for fuzzification. Since the input consists of a total of 21 columns, we can
already observe that in the ensuing step of fuzzification, the feature space expands, and

refinements are needed in order to deal with its size efficiently.

3.3.3 Fuzzification

In this subsection, we analyze the fuzzification process in which the crisp values of input
and output variables are converted into fuzzy sets. In order to achieve that, we generate
box plots, as presented in Figure 3.4, and further inspect the exploratory data analysis of
the original paper. As a result, we infer the ranges and the universe of discourse for each
variable, and we are able to define sets of linguistic terms as well as membership functions.
In order to maintain the computational simplicity and interpretability of the system, we
select to assign 3 linguistic terms and the associated membership functions for pressure,
visibility, wind speed, and humidity while appliance consumption and area temperature are

assigned 4 and 5 linguistic terms, respectively. A range of 3 to 5 terms and functions is very
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common in the literature and could adequately capture the human perception of a fuzzy
variable. Furthermore, common membership function shapes are selected such as the
triangular, trapezoidal, and sigmoid through the generators of Scikit-Fuzzy in order to
contribute to the overall simplicity of the system. In Table 3.1, we list the linguistic terms
assigned to each variable, and in Figure 3.5, we present the graphs of the associated
membership functions. Since the human perception of temperature and humidity in any
given area is universal and the different upper and lower bounds for each area individually
would not alter the human decision in the characterization of those parameters, all nine
temperature and humidity features share the same membership functions for temperature
and humidity, respectively. However, the temperature and humidity of each area is defined
as a different fuzzy input variable on the system in order to match the complexity of the
environment we study. Intuitively, a human would make nine different decisions for each
area of the building and aggregate those in order to make a deduction. It is worth noting
that since the ranges for each variable are derived from dataset analysis, the input and
output of our system can easily be parameterized to fit the load profiles of other buildings
given a history dataset. Finally, the degrees of membership for each crisp record are
calculated with the interp_membership method of Scikit-Fuzzy, forming fuzzy sets for each

input and output value.

(a) (b)
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(c) (d)

(e) (f)

Figure 3.4: Box plots of dataset features showing the ranges of values for each variable
in order to define membership functions. The features used in this fuzzy system case
study are: (a) Appliance Consumption in Wh; (b) Temperature of nine rooms in °C; (c)
Humidity percentage of nine rooms; (d) Wind speed in m/s; (e) Visibility in km; (f)

Pressure in mm Hg.

Table 3.1: Linguistic terms for input and output fuzzy variables.

Variable Linguistic Terms

Temperature | Very Cold, Cold, Cool, Warm, Hot

Humidity Dry, Comfortable, Humid
Wind Speed Low, Medium, High

Visibility Low, Medium, High

Pressure Low, Medium, High

Consumption Low, Medium, High, Very High
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(a) (b)

(c) (d)

(e) (f)

Figure 3.5: Membership functions for each input and output variable with different
color coding for each linguistic term: (a) Temperature; (b) Humidity; (c) Wind speed;

(d) Visibility; (e) Pressure; (f) Appliance Consumption.

3.3.4 Decision-Making Unit

In this subsection, we follow the results of the fuzzification process and analyze the feature
engineering and rule generation processes needed to construct the decision-making unit
for our fuzzy system. Since the environment we study is based on a historical energy

dataset of a building and there are many different parameters involved in the induction of

114

Institutional Repository - Library & Information Centre - University of Thessaly
21/05/2024 20:51:15 EEST - 3.145.11.99



the recommended appliance consumption values, we need to be able to extract rules that
are general enough to address the most dominant states of each parameter and at the
same time specific enough to include the most important states of each parameter that
contribute the most to the construction of a rule. Furthermore, as the environment
changes and evolves, we need to ensure that an easily interpretable model is in place that
can be conveniently retrained to reflect the updated set of rules in case there are major

changes in the occupancy, the appliance setup, and the general operation of the building.

The fuzzification process yielded membership scores for a crisp value on the corresponding
set of linguistic terms. In order to derive the most dominant linguistic term that will be
useful for rule extraction, we select the maximum membership score for each crisp value
and construct a new dataset that consists of the dominant label for each input and output
variable. For example, if the value for visibility yielded the highest membership value for
the linguistic term “Medium”, we set that as the dominant state of that record on the new
dataset. Additionally, due to its simplicity, versatility, and interpretability, we selected the
decision tree classifier as our base model for rule extraction. Since the new dataset of
dominant terms contains categorical input and output variables, we apply one-hot
encoding on the input and use the output terms as classes in order to enable the decision
tree to process the data effectively. Therefore, the original entry of the above example is
replaced with the appropriate three columns for low, medium, and high visibility while
having the value 1 for medium visibility and O for all other terms. This data transformation
introduces the challenge of dimensionality, since the combined total of 22 input and output
feature columns is now increased to 85. One-hot encoding contributes to the desired
behavior of the model, because all possible decision paths are represented in the branches
of the decision tree. However, a large amount of decision paths could lead to a substantially
large set of rules that not only hinders the interpretability of the decision-making model

but also the computational performance of the fuzzy system.

In order to tackle the challenge mentioned above, we shift the focus to the pursuit of the
most important terms that influence appliance consumption through the process of feature
engineering. Since we now have state-based features for each variable, we no longer need
to ask the question, “Does the temperature in the kitchen area have a significant impact

on appliance energy consumption?” but rather ask, “How important is the state of feeling
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hot in the kitchen area for appliance energy consumption?” The difference between the
above questions reflects the quality difference between feature engineering approaches in
a fuzzified input space. Choosing to answer the second question is equivalent to examining
the possible antecedents of a rule one by one without significant information loss. On the
other hand, the first question could eliminate the entire feature of temperature, thus
rendering the rules more general and sometimes less applicable to input sequences where

an antecedent related to temperature would activate a specific rule for computation.

Therefore, for our fuzzy system, we select to apply a hybrid feature selector, inspired by
the feature selection method proposed in [130] and based on the feature importance
values derived from an XGBoost classifier and a decision tree classification model on their
default configuration. The one-hot encoded dataset was split into a training and validation
set with 70% of the data allocated to the former and 30% of the data reserved for the latter.
These models were constructed with the expectation of retraining the decision-making unit
in the future; thus, choosing the simple hold-out validation would be less computationally
expensive than the other methods. The importance scores are extracted using the built-in

methods of the Scikit-learn and XGBoost packages, and they are presented in Figure 3.6.
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(a) (b)

Figure 3.6: Importance scores of state-based features. (a) XGBoost feature
importance, showing the importance of a feature on the performance of a trained
model using this algorithm; (b) Decision Tree Classifier feature importance, showing
the normalized total reduction of the criterion brought by that feature. More

important features receive higher scores.

It can be easily observed that since each feature was split into several linguistic terms, the
individual importance score of each term as a rule antecedent yields relatively low values
in both cases. The feature selector uses a threshold for each classifier to append the most
important state-based features into a list followed by duplicate elimination. The following

formulas clarify the process of appending a feature to the list:
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_ (appendif, IXG[f] = t1 (3.3)
f (S)_{ dropif,  IXG[f] < t1

_ (appendif, IDT[g] = t2 (3.4)
9() = { dropif, IDT[g] < t2

Symbols f and g denote the candidate feature groups to be appended to the list, and the
variables IXG[i] and IDT[i] refer to the feature importance values derived from the
XGBoost and Decision Tree classifiers, respectively. The symbols t1 and t2 represent the
selection threshold of each method and are set to 0.035 and 0.045, respectively. Each
threshold was selected after the inspection of each individual feature score. The values
represent the middle points of each scale, shifted by 0.005 considering the rounded

maximum and minimum importance of the variables.

The resulting list of features is used as the input of a new decision tree classifier, where the
output classes are the linguistic labels that characterize consumption. Decision trees are
suitable for rule extraction, since they can be linearized to if-then statements [131].
Consequently, we inspect every path of the decision tree recursively and parse the
corresponding rule based on the features appearing in that path. Each non-leaf tree node
contains a state-based feature, which is selected as an antecedent for the rule. If the
feature follows the left branch of a decision path, it is used with the negation operator,
since the value for that term is 0. Alternatively, if the feature follows the right branch, it is
included in the antecedent as is. The antecedents in each rule are connected in logical
conjunction. Leaf nodes denote the consequents of each rule, since they are the linguistic
terms that characterize appliance consumption. The rules are written in a text file, which is
then processed and parsed to generate an executable Python code that can be used by the

Scikit-Fuzzy API to perform simulations of the fuzzy logic system.

3.4 Results

In this section, we demonstrate the output response of the fuzzy logic system after the
simulation of an input sample. We outline the performance and interpretability features of
the system by highlighting the effectiveness of the changes made in the decision-making

unit. Such changes affect the way input and input is handled during rule generation and
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shorten the response time of the computation process. Since the crisp output results from
the aggregation of rules that get activated (that is, their antecedents are satisfied), using a
reduced rule base consisting of the most important antecedents leads to fewer antecedent
checks. Moreover, due to the nature of some defuzzification methods and the disjunctive
effect of multiple rules as seen in [117], the output may not satisfy the consequent of any
rule to any extent, because it would be the result of a compromise between different
extreme regions on the consequent. Using a decision tree structure combined with a
feature refinement technique should decrease the likelihood of those compromises, since
the resulting branches are expected to be smaller and distinctly different on the variables
that represent the antecedents. Therefore, rules that could point to different extreme
regions, causing a compromise in the aggregation, are expected to include a higher number
of different antecedents that need to be activated. The effect could still be present, but
this expectation sets the requirement of having different antecedents and contributes to

the interpretability of the system.

For our example, we assign as input values the crisp values of the first dataset record. Since
this system does not predict energy consumption but is aimed at giving advice on the
desired minimum consumption based on past operation, the selection of dataset records
for demonstration purposes is a fast and convenient way of providing a realistic set of input
values. Arbitrary input values for each dataset feature could still yield a response from the
system, but the process of determining the probability of their occurrence for this building
would be time consuming and lies outside the scope of this work. The fuzzy system was
initialized with the integration of 281 rules derived by our decision-making unit. Since the
record passed in the input may contain data fields that are not present as antecedents in
that set of rules, we implemented conditions to check for their occurrence in the rule base
and exclude the columns when those antecedents are not present. In this example, we
observed that 11 out of the 21 input variables were not present in the final set of rules,
hence excluding five temperature values, five humidity values, and the pressure value.
After 1.27 s of computation time, the system yielded a response of 209.89 Wh for appliance
consumption, which can be interpreted as the optimally typical consumption value based
on the given environmental data and the history of operation of the building. In Figure 3.7,

we present the resulting area that is used to calculate the crisp output value based on the
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Mamdani approach. Additionally, in Figure 3.8, we present the response of the fuzzy
system for 500 10-min intervals, denoting the minimum energy consumption for 500
dataset records. While the inspection of an individual data point in Figure 3.7 provides
significant details on the two fuzzy sets involved in the computation as well as their
membership, the simulation in Figure 3.8 shows that the minimum energy consumption of
the building could be characterized as mostly “Medium” for those timesteps. However, the
crisp output values vary, showing the potential influence of fuzzy sets related to different
linguistic terms. For example, for timesteps where the minimum energy consumption is
below 140 Wh, we can assume that there could be a significant past contribution of several

instances where “Low” consumption could occur given the environmental datain the input.

Figure 3.7: Sample response of the fuzzy control system for the computation of energy
consumption. The resulting fuzzy sets are derived from the highlighted blue and
orange surface areas and the bold black line denotes the optimally typical energy

consumption value after the defuzzification process.
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Figure 3.8: Minimum energy consumption response values for 500 timesteps. Each

timestep is a 10-min interval corresponding to a dataset measurement.

This control system features several improvements over the base ID3 model for this
environment due to the implementation of the decision-making unit. Table 3.2 presents
the accuracy scores and the number of resulting rules after the linearization. Through our
experiments, we observed that the feature engineering process contributed to a slightly
higher classification accuracy while considerably decreasing the number of input features
and the number of the resulting set of rules. Consequently, the fuzzy system was capable
of computing crisp values fast, despite the complexity and initial number of the linguistic
variables. Moreover, it is important to mention that since the time interval of the
measurements in the dataset is 10 min, we set that time as the upper limit for a fuzzy
system response; this should be the maximum amount of time so that the computed
optimal typical value would be the most valuable for applications. The base decision-
making unit produced a significantly larger set of rules, and the fuzzy system did not yield

a response during that time.

Table 3.2: Linguistic terms for input and output fuzzy variables.

Model Features Accuracy (%) Rules
Base Decision Tree 85 88.8 802
Refined Decision Tree 14 89.2 281
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3.5 Discussion

This research work explored a fuzzy system design approach for a residential building based
on weather parameters in order to derive recommendations for the minimum energy
consumption values based on environmental data. Since the rules of the system are
unknown and the nonlinearity of the recorded time series data increases the overall
complexity of the environment, a machine learning model was constructed and the
decision-making unit of the fuzzy system was modified in an effort to generate accurate
rules based on the past operation of the building. Compared to the more traditional
decision tree rule generation model, our structure managed to shrink the set of rules by
65% while achieving slightly better classification accuracy. Dimensionality proved to be
another challenge for this system, since a total of 85 features would result in a large
decision tree that would be hard to interpret, and the generated set of rules would slow
down computation time. Therefore, the decision to implement a hybrid feature selector in
an attempt to find the most important linguistic terms led to a significant structural
optimization [132], since the remaining set of features was 84% smaller than the initial one,
and crisp input values were essentially filtered against the rule base to eliminate redundant
features—i.e., features that do not contribute to the conditions of any rule. Consequently,
the computational performance is acceptable, since the response of the system is within
the time interval of recording an energy consumption measurement through smart meters.
The base linearized decision tree structure featuring all available variables resulted in a
larger and less accurate set of rules. Therefore, there was no output for the base system
within the 10-min intervals. For the purposes of this work, we are satisfied with an
acceptable computation time within the measurement interval because the fuzzy rationale
is not constantly exact, and the output of fuzzy systems may not be generally acknowledged
[133]. Shifting the focus toward faster computation times could be detrimental to the
stability of the system due to refinements that could be more impactful than feature
importance, resulting in an insufficient amount of rule checks. Thus, we focused on the
structure and the quality of the features in order to ensure proper knowledge

representation.

Additionally, the decision-making module could be easily retrained to accommodate future

changes in occupancy and appliance operation. The resulting energy consumption values
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represent the optimal consumption under the specified weather conditions and could be
used by applications in order to inform the consumers, encouraging them to maintain or
change their consumption habits, thus introducing fewer irregular patterns in their load
profiles. Alternatively, the response of this fuzzy system could be utilized in demand
response applications on the provider side in order to drive indirect adjustments to
consumer behavior through varying pricing schemes. Since we believe that a direct
adjustment targeting the load profile curve could lead to consumer dissatisfaction, an
indirect adjustment based on the recommended consumption could provide an incentive
to consumers to manage and plan their activities voluntarily. The integration of the
proposed structure in consumer or provider applications could be overall user-friendly,
since environmental measurements and smart metering information could be provided
automatically, without the contribution of an expert for the extraction of knowledge in a
particular residential building. Moreover, depending on the parameterization used in the
configuration of membership functions for each use case, this system could be suitable for
any residential building. Since we use fuzzy logic to map input and output to linguistic terms
through an application programming interface, it could be convenient for developers to
use those linguistic terms as an additional tag when referring to the output response, thus

characterizing the minimum energy consumption in a more interpretable way.

However, it is worth noting that maintaining the transparency of the system and the
simplicity in our approach could be regarded as an adaptability and performance hurdle
under specific circumstances. The decision tree structure used in the rule generation
process can be sensitive to changes in the data. Since the input and output are tied to
linguistic terms, there is a level of protection tied to the range of values that corresponds
to the same linguistic term but more extreme data variations that could result from
significant changes in the appliances, the activities of the occupants, or extreme weather
conditions; the model may need to be trained again to reflect the changes on the rules
appropriately. Fortunately, in the localized residential environment, retraining the model
would not be detrimental to the real-world performance of the system considering
measurements recorded at 10-min intervals, but we can expect that a rule generation
module based on a neural network and evolutionary algorithms would be more efficient

under those extreme conditions while sacrificing interpretability.
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In the future, comparisons between this decision-making model and other modern rule
generation approaches such as fuzzy neural networks and genetic algorithms would be
beneficial to the overall exploration of interpretable and computationally efficient
solutions for similar datasets under the same assumptions. Additionally, the integration of
similar fuzzy system designs featuring comparable feature engineering approaches would
be an interesting area to explore, as automation solutions and demand response
applications evolve with the help of machine learning. Finally, the extension of the existing
system with the inclusion of a feedback module capable of regulating the desired behavior
of the residential buildings based on specific thresholds set by the electricity providers

would enhance the proposed structure.
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Chapter 4 Neural Network Modeling Towards Granular Standalone Load

Estimation

4.1 Motivation

Standalone estimation models add significant value to short-term forecasting in the energy
sector since they provide performant solutions through a single centralized structure for
the prediction of load and electricity price. A plethora of methods ranging from traditional
statistical models to more robust machine learning approaches could be applied to those
tasks, enabling the development of flexible demand response applications and energy
management systems. The complexity of those models could be easily determined through
the analysis of relatively small sets of hyperparameters and satisfactory predictions could
be derived within short time intervals. Therefore, the performance evaluation of those
models could provide insight towards the individual behavior of estimators in short-term
horizons and the greater role of each structure as a building block in combinatorial

methods.

Recent research efforts focus on machine learning estimators and the class of neural
network models since these structures could adapt to more complex time series patterns
through more robust and highly customizable training processes. Additionally, since these
methods typically operate as black box approaches for function approximation, the
resulting models are difficult to interpret and a more thorough examination of the output
is often required. Lastly, it is evident that most standalone statistical models follow a
simpler structure based on dataset assumptions. As a result, generalization issues could
occur and the standalone statistical models may not be able to offer scalable solutions as
the dimensions of the studied dataset increase and the time series include more diverse
patterns. Therefore, this observation renders the study of standalone neural network
structures increasingly interesting as energy research and applications focus more on the

design of flexible real-time automation systems.

Standalone neural network structures such as MLP, CNN and LSTM offer a wide range of
powerful tools for short-term load and price estimation since complex patterns could be

identified within a small amount of training epochs. These models are widely used in the
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design of robust forecasting frameworks coupled with novel preprocessing or optimization
techniques and often could be combined to form more sophisticated models. However, the
selection process for the utilization of a specific neural network structure is not always clear
since the baseline performance evaluation of those structure does not sufficiently cover all
short-term and very short-term forecasting scenarios. Consequently, there is confusion
surrounding the integration of those methods that typically leads to arbitrary decisions and
extensive trial and error experimentation. As the forecasting horizon becomes shorter, it is
observed that fewer studies consider the performance comparison of those models and

tasks involving highly granular load and price measurements are insufficiently covered.

In response to those observations and the overall uncertainty surrounding high resolution
energy forecasting through neural network design, our contribution focuses on the
comprehensive comparison of baseline neural network performance for the forecasting
task of minutely active power predictions. This study highlights the performance of MLP,
CNN and LSTM variants in their default configuration through the simple and interpretable
metric of MAE and examines the training behavior of those structures through graphs that
monitor the training process. Additionally, the average training time per epoch was
measured for each baseline configuration in order to denote the most efficient architecture

in terms of convergence.

This contribution covers several perspectives of the minutely sampled point forecasting
tasks, resulting in the thorough understanding of this edge case for future research. First,
the examination of error metrics allows researchers to observe the performance
characteristics of the studied structures as the deployment of those powerful architectures
is expected to yield low error values in high resolution point forecasting processes. Second,
the examination of the loss curves provides useful information with regards to the training
process in this edge case. It is evident that high resolution data could present patterns at a
higher level of detail and neural network structures could learn those patterns easily
through a smaller number of iterations when compared to other forecasting horizons. Since
impactful changes to weights and parameter values typically occur during the early training
stages it would be interesting to monitor the effect of those changes in a use case where
the first training iterations could represent the majority of training steps. Third, the

evaluation of training time in this research scope is a crucial factor towards model selection
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since higher training time could render the deployment and recalibration of a model in this
forecasting horizon infeasible. Alternatively, these measurements could also highlight the
need for more computing power, denoting that some neural network structures could be
more computationally expensive. As a result, future research works focusing on energy
applications could consider those three perspectives and based on the results of this study,
they could establish a base for more informed model selection, speeding up experimental
throughput in short-term and very short-term tasks. The following sections correspond to

the introduction, methodology, results and discussion of this published work.

4.2 Introduction to Minutely Active Power Forecasting Models using Neural Networks

The evolution of the smart grid and smart metering technology has enabled electricity
providers to develop more sophisticated Demand Response (DR) programs in order to
influence the consumption patterns of their customers by adjusting pricing signals. In the
modern grid, Demand Response programs exploit the dependencies of the information
streams that flow between customers and suppliers. Customers allow for their load profiles
to be created and scrutinized, by providing smart meter data that reflect their consumption
patterns; the data are derived simply from the daily operation of their devices. Suppliers
are then able to interpret that data, and after identifying the demand trends, they can
reflect them on supply expectations via price signal alterations that, in turn, can shift or
change consumption patterns. In this way, electricity demand may be handled in a dynamic
environment. In search of greater Demand Response flexibility and optimization as well as
better third-party support through automation there is a lot of ongoing research in the field
that is focused on the development of more precise load forecasting techniques, in order
to obtain even more dynamic price signal adjustments. Hence, there is a considerable
contribution from the areas of artificial intelligence and machine learning to the energy
sector by way of various models and techniques aimed at managing and predicting real-

time price and load fluctuations [134].

Since the data extracted from smart meters is in the form of time series, many statistical
methods and classical machine learning models have relatively difficult implementations
due to the temporal difference of the data points and the limitations concerning missing

values, data dependencies, and dimensionality. The problem of missing values refers to the
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complete absence of some samples or the existence of non-interpretable data entries in a
dataset [135]. Missing values introduce a level of uncertainty and bias which degrades the
performance of classical models. Therefore, the reasons behind the existence of missing
data need to be identified and imputation techniques in the preprocessing of the data have
to be considered in order to create more robust classical models. On the other side of the
spectrum, neural network models often omit missing values without a significant loss of
quality in the results. Furthermore, data dependencies refer to the hidden relationships
and patterns, such as trends, which could provide useful insights about the time series
[136]. Traditional autoregressive integrated moving average (ARIMA) models are based on
linear relationships and not on the joint distribution of random variables. Hence, nonlinear
trends are not fully explored. Additionally, the limitation of dimensionality refers to the
ability of the model to process a large number of input variables derived from different
time series efficiently, while yielding meaningful results [100]. Traditional models focus
primarily on univariate input data, considerably limiting the potential insights derived from
richer time series datasets [137]. Neural networks are more suitable for handling complex
relationships within the data and for developing robust forecasting models that are
tolerant to noise: long short-term memory (LSTM) networks [138] are capable of identifying
the long-term dependencies between data points and convolutional neural networks
(CNNs) [139] can extract features from the raw input sequence and encode them in a low-
dimensional space. The multi-layer perceptron (MLP) [140] can model non-linear trends

and is able to handle missing values in the datasets well.

In 2015, Alamaniotis and Tsoukalas [141] presented a data-driven method for minutely
active power forecasting based on Gaussian processes. This research project highlighted
the importance of minute predictions in the residential setting due to the volatile nature
of household consumption and examined machine learning models that outperformed the
more traditional autoregressive moving average approach. In 2017, Singh et al. [142]
trained an artificial neural network comprising 20 neurons in order to conduct short-term
load forecasting of the NEPOOL region of ISO New England and yielded a decent Mean
Absolute Percentage Error (M.A.P.E) performance while training on weekday data points.
In 2018, Kuo and Huang [143] proposed the Deep Energy neural network structure, which

consisted of an input layer, a feature extraction module, and a forecasting module. The
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tuning of the parameters in the convolution layers of the feature extraction module and
the data flattening layer in the forecasting module resulted in relatively high precision
short-term load predictions. Hossen et al. [144] examined deep neural network
architectures in order to accurately forecast residential load consumption for a single user
with one-minute resolution based on one year of historical datasets. Zhang et al. [145]
reviewed machine learning methods in smart grids and outlined state-of-the-art
approaches in the field of load forecasting. Kampelis et al. [146] used the genetic algorithms
and neural networks to evaluate day-ahead load shifting techniques. Koponen et al. [147]
presented physical- and data-driven models for Demand Response. Their work presented
a very useful comparison of a support vector machine and a multi-layer perceptron for
power forecasting. In a more recent work, Ahmad et al. [148] proposed a modular neural
network model for load forecasting which consisted of a pre-processing module for the
input time series, a forecast module where the artificial neural networks were trained, and
an optimization module which helped minimize the forecast error. Walther et al. [149]
utilized machine learning processing techniques such as feature engineering and
hyperparameter tuning in order to optimize a Gradient Boosting Regression Trees (GBRT)
algorithm which performs very short-term load forecasts with a 15-minute horizon based
on minutely sampled data. Zhu et al. [150] presented a comparative study of deep learning
techniques using minute-level real-world data of a plug-in electric vehicle charging station
in order to evaluate the performance of those approaches on a variety of timesteps. The
results of this study are valuable to machine learning researchers in the energy sector due
to the examination of many different configurations in the deep learning space. Gasparin
et al. [151] assessed the performance of deep recurrent neural networks on minutely
sampled datasets of individual household electric power consumption in order to pave the
way for standardized evaluation of the most optimal forecasting solutions in the field.
Susan Li [152], in an article about time series prediction using LSTM, highlighted the
minutely sampled data of a residential dataset provided by the University of California at
Irvine (UCI). Cheekoty [153] presented the main advantages of neural network techniques
over classical machine learning in time series forecasting, and, finally, Orac [154]

constructed an LSTM model in order to predict trading data.
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In this study, we focus on the minutely active power forecasting for residential electricity
consumption, since we believe that, despite their overall complexity, accurate high
granularity models can lead to fine-grained price signal adjustments. In the development
of those models we use the types of neural networks mentioned above on the individual
household electric power consumption dataset found in the UCI machine learning
repository [155]. The main purpose of this work is to compare the baseline performance of
each network on the same dataset and provide useful remarks on the training process of
each model. There is little work in the area of minute power forecasting and our study is
the first concise comparison of the core neural network types on this prediction horizon
with experiments conducted on residential active power data. In Section 4.3, we explain
the methodology and the concepts that were followed to conduct the experiments. In
Section 4.4 we present the results of our experiments through evaluation metrics relevant
to the training process and the prediction quality of each network. Finally, in Section 4.5

we discuss the results obtained and suggest some directions for future work.

4.3 Materials and Methods

4.3.1 Neural Networks and Performance Metrics
In this subsection it is important to provide a concise introduction to the neural networks

and the performance metrics we used for our experiments in order to outline their primary

behavior prior to presenting the configurations of our machine learning models.

4.3.1.1 Multi-Layer Perceptron

The multi-layer perceptron extends the perceptron learning algorithm [156] and uses
neurons arranged in layers in order to form a feedforward artificial neural network that
approximates a function. This type of neural network uses a non-linear transformation on
the input, which is learnt through the adjustment of weights and biases in the intermediate
layers of the network. For simplicity, we considered a multi-layer perceptron with one
hidden layer. This MLP approximated a function f: R? — RE, where D is the size of the
input vector x and L is the size of the output vector f(x). Following the matrix notation,
the MLP, which consisted of an input layer, a hidden layer, and an output layer, can be

expressed by the following formula:

130

Institutional Repository - Library & Information Centre - University of Thessaly
21/05/2024 20:51:15 EEST - 3.145.11.99



£ =6 (6@ + WO (s(b® + wx))) @.1)

In this formula, b and W@ are the bias vector and weight matrix from the input vector
to the hidden layer, b@ and W@ constitute the bias vector and weight matrix from the
hidden layer to the output. Activation functions s and G define the output of the hidden
layer and the output layer, respectively, given a set of inputs. The MLP was trained through
backpropagation in order to minimize the error in the output, while approaching the

expected result. The change in each weight was calculated with gradient descent [157].

4.3.1.2 Convolutional Neural Network

Convolutional neural networks share the same principles as other artificial neural
networks, such as MLP, since they also consist of neurons arranged in layers and utilize
iterative weight and bias updates to learn a function. The main differences with other types
of neural networks lie in the operations performed, the architecture, and the areas of
application. Convolutional neural networks perform kernel convolution by passing matrices
of numbers, the kernels or filters, over the input in order to detect features. The base
architecture of a CNN consists of the convolutional layer, the pooling layer, and the fully
connected layer. The convolutional layer performs the kernel operation described above in
order to produce a feature map. Pooling layers use the sliding window method in order to
downsample the feature map, reducing its dimensions. The inclusion of pooling layers helps
the networks train faster and provides an extra layer of safety against overfitting. Since
convolution and pooling layers follow a 3D arrangement of neurons, data need to be
flattened in order to produce 1D vectors in the output. Furthermore, fully connected layers
are used on flattened input in order to produce the output of the CNN model. Figure 4.1
illustrates the structure of a convolutional neural network. The training process of CNNs
shares the same concepts as MLPs but the formulas used throughout this process are
modified to accommodate the differences in neuron arrangement and the usage of
convolution. This type of neural network is particularly popular in image recognition, since
image data can be segmented appropriately [158]. For the purposes of our study, we
conducted some experiments on the 1D CNN, since this variant handles data with low

dimensionality and is suitable for time series and sensor data analysis.
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Figure 4.1: Convolutional neural network architecture illustration created using the

NN-SVG online schematics tool found in [159].

4.3.1.3 Long Short-Term Memory Network

Long short-term memory networks constitute a variation of recurrent neural networks
(RNN) [160] primarily designed to handle long-term data dependencies. Similar to RNN, the
LSTM follows a structure consisting of blocks, the LSTM cells. Each cell has its own state C;,
which is passed down to all the blocks in the network. Since the cell state passes through
all the LSTM cells, each cell can adjust the state by removing or adding information.
Information flowing through the cell state can be regulated with the forget, input, and
output gates of every cell. The forget gate of a cell at the timestamp t helps with

information removal and can be expressed with the following formula:

fe = o(wslhe—q, x¢] + by) (4.2)

where x; is the information at the current timestamp, h;_; is the output of the previous
LSTM block, Wy is the weight of the gate, bf is the bias, and o is the sigmoid function.
Similarly, in Equations (4.3) and (4.4) the input and output gate are expressed with b; and

b, being the respective biases and w; and w, the respective weights.
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ir = o(wlhe—q, x¢] + b;) (4.3)

or = oW [he—1,x¢] + by) (4.4)

The input gate indicates which values will be updated and stored in the cell state.
Furthermore, the output gate indicates the parts of the cell state that will be moved to the
output. The information that could possibly be stored to the cell state at the timestamp ¢t

is expressed as the candidate d; and is formulated as:

dt = tanh(wc[ht—lr xt] + bc) (4-5)

where w, and b, are the respective weights and biases. The current cell state that reflects

the adjustments made at timestamp t can be expressed as:

Ct = fe*Croq + i *d; (4.6)

where c¢;_; denotes the cell state at the previous timestamp. Lastly, the output of the cell

h; is expressed as:

ht = O¢ * tanh(ct) (47)

LSTM networks have been used extensively in the field of load forecasting since the ability
to capture long temporal dependencies efficiently is an important characteristic for time
series analysis. In this study we decided to test the base LSTM and two more variants, the
stacked LSTM and the bidirectional LSTM, in order to make the comparison more complete.
The stacked LSTM variant contained more than one hidden layer of cells and the
bidirectional LSTM duplicated the first recurrent layer in order to process an input
sequence in both time directions simultaneously. Lastly, the LSTM networks were trained

with backpropagation through time and gradient descent [161].

4.3.1.4 Performance Metrics
Since our machine learning task was the prediction of residential active power, regression

metrics were considered in order to capture the error in our predictions. Throughout the
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literature, popular regression metrics such as RMSE, MAE, and MAPE are commonly used
to denote the loss in the predicted results of neural networks [162]. In this work we
selected MAE as our loss function since it is a linear scoring function of equally weighted

differences, rendering this metric easy to understand and interpret.

Our definition of baseline performance for each neural network model examined in this
study was the set of MAE scores on the train and test set as well as the average training
time per epoch under the assumptions that the configuration parameters were the same
and the networks were tested on the same dataset with the same preprocessing
adjustments. Seasonal dependencies and special days would certainly improve the
performance of our models, but in order to maintain simplicity we examined the univariate

case of active power prediction in this work.

4.3.2 Tools and specifications
In order to conduct this comparative study, we used Python 3.7.5, Pandas 0.25.3, and

Numpy 1.17.3 for data manipulation, SkLearn 0.21.3 for preprocessing, and Matplotlib for
visualization. Furthermore, we used Keras 2.2.4 with the Tensorflow 1.15.0 backend in
order to build our neural networks and train our models. The forecasting models were
compiled and executed on a desktop with an AMD Ryzen 1700X processor, 8 gigabytes of
RAM, and an Nvidia 1080Ti graphics processor. Finally, the code of this study is available
on Github [163].

4.3.3 Dataset and Configuration
For this study we used the individual household electrical power consumption dataset from

the UCI machine learning repository, which contains 2,075,259 measurements gathered
from a house located in the French commune of Sceaux between December 2006 and
November 2010. The dataset contains minutely sampled time series for global active
power, global reactive power, voltage, global household current intensity, and sub-
metering measurements for certain rooms and devices. This dataset was selected as the
core input of our models primarily due to the sampling frequency of the data points.
Minutely sampled time series matched the prediction horizon that we wanted to target, in
order to produce an output at the same level of detail. It is important to note that a lower
sampling frequency, for the targeted prediction horizon, would make the input less useful

due to the loss of meaningful information. On the other side of the spectrum, an even
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higher sampling frequency would yield more accurate predictions, but since a sampling
frequency of 1Hz would be considered fast for a smart meter and impractical for most
applications [164], we opted for minutely sampled data. Furthermore, we conducted all
our experiments on the same dataset in order to preserve consistency. After inspecting the
data, we deduced that the time series associated with power, voltage, and current intensity
was representative of the typical residential behavior and similar datasets would only differ

in the data preparation process.

Since we wanted to predict the global active power, we used this time series as our main
feature variable, and we examine additional possible useful feature variables in the “Data
Exploration” section below. In order to make the data more readable and the records more
concise we concatenated date and time information in a single field per record and
replaced any missing values marked as “?” with NaN, denoting that these values are not

numbers.

4.3.4 Data Exploration
In order to understand the data better, we used line plots for each feature (Figure 4.2)

variable of the dataset and we consulted the augmented Dickey—Fuller test of [152] to
deduce that the global active power is a stationary time series and therefore is not affected
by seasonality. Afterwards, we examined the frequency distributions of the feature
variables (Figure 4.3) by plotting histograms and concluded that global active power follows
a bimodal distribution. It is interesting to note that the yearly distribution of global active
power shows that active power is consistently bimodal (Figure 4.4) each year and as a
result, a validation split based on that information would yield a test set that adequately
represents the entirety of the data. Finally, we used the Pearson correlation metric (Figure
4.5) in order to check for the property of synchrony between the time series and we
observed that global active power is synchronous with global intensity. As a result, we were

able to test the impact of global intensity as an extra input variable in our neural networks.
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(8)

(h)
Figure 4.2: Line plots of dataset features. Since each feature is a time series, the y-axis
represents the unit of each feature, and x-axis represents the date. (a) Global
household active power. (b) Global household reactive power. (c) Household voltage.
(d) Global household current intensity. (e) Kitchen energy consumption. (f) Laundry
room energy consumption. (g) Consumption of electric water-heater and air-
conditioner. (h) Remaining energy consumption measurements not covered by the

sub-metering information.

C) (b)
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Figure 4.3: Histogram of feature distributions (100 bins). The y-axis represents the
number of occurrences and the x-axis represents the unit of each feature. (a) Global
household active power. (b) Global household reactive power. (c) Household voltage.
(d) Global household current intensity. (e) Kitchen energy consumption. (f) Laundry
room energy consumption. (g) Consumption of electric water-heater and air-
conditioner. (h) Remaining energy consumption measurements not covered by the

sub-metering information.

(a) (b)

(©) (d)

Figure 4.4: Yearly distribution of global active power. The y-axis represents the
number of occurrences and the x-axis represents the unit of global active power (kW).
(a) Global active power distribution in 2007 (b) Global active power distribution in
2008 (c) Global active power distribution in 2009 (d) Global active power distribution

in 2010.
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Figure 4.5: Pearson correlation between dataset features. The labels of this 2D array

are the names of the dataset features. A positive correlation of 1 is represented by
yellow and a negative correlation of -1 is represented by blue.

4.3.5 Problem Formulation and Preprocessing

The first step in this comparative study was to define our research problem and make some
initial hypotheses in order to frame the problem space properly. We selected to predict the
next minute in the future from the minutely sampled data of the residential UCI dataset.
We decided to frame this problem as a supervised learning task by implementing the sliding
window method, as proposed by [165], so that our neural networks would be trained to
learn a function that maps the input data points to an output. As an initial hypothesis, we
considered this formulation in a real world setting where our trained models would be able
to benefit an application which could take advantage of minutely predictions. In this
scenario, we needed to select a window of lagged observations small enough so as not be
affected by cold-start discrepancies. Moreover, the selection of a small window would also
cover the main issue of high frequency predictions, which is the interpretation of

relationships between data during the training phase of a neural network model. Since data
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points were sampled at a high rate, we needed to choose critical subsets of data points that
clearly depict an upcoming peak, a valley or a more stable active power behavior on the
next time step. A big set of data points at the input could lead to a wrong interpretation,

since some of them could be interdependent or irrelevant to the predicted output.

Intuitively, we needed to select the smallest window of meaningful data points that would
maximize temporal relevance. Since the selection of a single data point in the input may
not provide valuable information about the behavior of the time series in the future, a set
of two data points could help the neural networks identify patterns from the slope of the
line that connects the data or from the level of fluctuations that occur between individual
values. Therefore, we decided to set a window of two data points prior to the one that was
about to be predicted as our input, on the assumption that these should be the most
relevant data points giving us a clear connection to the output. It is certainly possible to
conduct the same experiments with a larger input window. Consequently, the input of our
neural network models consisted of two columns, the global active power at time t — 1
and t — 2. Since the global current intensity had high Pearson correlation with global active
power, we added the global intensity at time t — 1 and t — 2 as input features on the base
LSTM model in order to test the impact of synchrony as an additional experiment. The

predicted output was the global active power at time t.

Before configuring the neural networks and building our models, we applied the following

preprocessing transformations to the data:

e Values of input features were scaled between [0,1]. Min-max normalization was
used in that interval through the MinMaxScaler class of SkLearn since neural
networks handle input features well when they are on the same scale and the
interval remains small;

e Two input columns were created based on the sliding window method.

e The dataset was split by allocating the first three years of observations to the
training set and the last year to the test set. Since the distribution of global active
power remains consistently bimodal, we believe that this is a proper holdout

validation split;
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e The training and test sets were split in input and output columns reshaped as the
3D format (samples, timesteps, features) for CNN and LSTM and (samples, features)

for MLP, since it expects a 2D format.

4.3.6 Neural Network Configurations
In this study we configured the most prominent neural networks in time series forecasting

and kept the activation and loss functions the same, as well as the compilation and training
parameters, in order to derive a baseline performance. Therefore, we examined the
behavior of the base LSTM network as well as the stacked and bidirectional variants.
Furthermore, we compiled models for a 1D CNN and an MLP in order to compare more
neural network architectures. As proposed in [152], neurons on the input layer of every
model followed the dimensions of the feature columns and were equal to the window size
we selected above. Every model had one hidden layer of 100 neurons and 1 neuron on the
output layer. We selected 100 neurons as the hidden layer size because we wanted every
network to have sufficient processing capacity. The size of the output layer was determined
by the expected result. Therefore, one neuron in the output layer would predict the global
active power at time t. Since the stacked LSTM architecture should contain more hidden
layers, we decided to use one extra hidden layer with 100 neurons for our stacked LSTM
model. Additional experiments were conducted on the stacked LSTM architectures where
neurons would be dropped out randomly with a probability of 0.2 in order to test the

impact of regularization on more complex neural network structures.

The 1D convolutional network model contained a convolutional layer with 64 filters, a
kernel size of 2, and the input was padded accordingly in order to obtain an output of the
same length. Additionally, in our CNN architecture we added a pooling layer with a pool
size of two in order to downsample the detected features. The pooling layer shared the
same padding configuration as the convolutional layer. We proceeded to flatten the output
of the pooling layer and use it as the input to a fully connected layer of 100 neurons. The
predictions derived from the CNN model were obtained in the output layer. Finally, the
MLP model had a simple structure of one input layer, one hidden layer, and one output

layer, following the general configuration mentioned above.

The activation function used between the layers of every model was the rectified linear

unit (ReLU). Moreover, we used the Mean Absolute Error (MAE) function to measure the
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loss, since this is a simple metric which denotes the absolute difference between the data
and the model predictions. In addition, the Adam optimizer was used for adaptive learning
rate optimization [166]. The training parameters for every model were considered with
regard to optimal MAE values on the test set. Hence, we used holdout validation in order
to use the first three years of data as the training set and the last year of data as the test
set. This split was selected because we did not intend to tune the parameters of each model
after training. In addition, more sophisticated validation techniques applicable to time
series, such as nested cross-validation, would add unnecessary complexity to the
comparison we attempted to examine. We acknowledge that the increased processing
capacity of the hidden layers could cause increased total training times and a possible risk
of overfitting. Therefore, in order to avoid overfitting, we stopped the training process and
saved the models when the validation loss scores could not improve further, while their
metrics were observed simultaneously in the notion of logical conjunction on the same
epoch interval. After the eighth epoch the validation loss of any individual model was at
least slightly worse than the best loss observed in that eight-epoch interval for that same
model. As a result, the neural network models were trained after eight epochs with a batch

size of 72 training samples.

4.4 Results

As a result of the above configurations we evaluated the performance of our models from
the values of the loss function on the training and test set. In Figure 4.6, we present the
graphs containing a sample of 150 global active power data points from the test set and
150 predicted data points generated by each neural network model, in order to visualize
the robustness of our predictions on each time step. Moreover, in Figure 4.7, we present
the graph panel containing the loss function values throughout the training process of each
neural network model. The examined models performed well when trying to predict the
global active power from the unknown data in the test set since the data points at the same
time step neither diverged drastically nor did they follow an unusual pattern. However, we
can observe that when a peak or a valley occurred in the test data, the models made a less
accurate prediction, resulting in greater deviation from the actual active power data points
in the same time interval. A distinct example of this phenomenon can be detected in the

region between the 45™ and 55% data points, where the predicted value for the power
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peak was lower than the actual test value. Through this example, we are also able to notice
the difference in the quality of predictions among our neural network models. The stacked
LSTM model made the least accurate peak prediction in that region, while other models,
such as the 1D CNN and MLP, were able to achieve approximations closer to the actual
peak value. These observations can be generalized to the entirety of the dataset, since it is
indeed difficult to anticipate peaks and valleys in such a short prediction horizon when only

the most recent and most relevant data points of the same feature are considered.

Furthermore, the graphs of the training and test loss show that we avoided overfitting and
underfitting with that configuration, since the curve of validation loss was always below
the curve of training loss. The curves of the training loss function in each graph show that
there was a steady improvement of the prediction quality throughout the training process,
whereas the validation loss curves show that after a small number of epochs no further
improvement could be achieved when testing the models on unknown data, given those
configuration parameters. It is interesting to note that models with inferior training loss
results, such as the 1D CNN, had a decent performance on unknown data and were able to

fit the data reasonably well in regions where peaks and valleys occurred.

(a) (b)
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(c) (d)

(e)

Figure 4.6: Prediction evaluation on 150 data points for (a) Long Short-Term Memory
(LSTM) network, (b) Stacked LSTM, (c) Bidirectional LSTM, (d) 1-Dimensional
Convolutional Neural Network (1D CNN), (e) Multilayer Perceptron (MLP). The red line
represents the data points of the test set and the blue line represents the data points
predicted by each model on the same time step. On the y-axis we set the unit of global

active power (kW) and on the x-axis we enumerated the data points.
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(a) (b)

(c) (d)

(e)

Figure 4.7: Loss function on train and test set for eight epochs of training on (a) LSTM,
(b) Stacked LSTM, (c) Bidirectional LSTM, (d) 1D CNN, (e) MLP. The blue line represents
the loss function during training and the orange line represents the loss function
during validation. On the y-axis we set the values of the loss function and on the x-

axis, we enumerated the epochs.
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Table 4.1 presents the evaluation metrics for every neural network type on the training and
test sets. After examining the overall error loss function scores of each model, we deduced
that the top performing ones were the MLP and the Baseline LSTM. Since the LSTM network
is more suitable for handling temporal relationships, we re-ran the experiment by adding
the extra feature of global current intensity in order to test the impact of synchrony and
we observed a decrease in training time. Furthermore, we ran tests by adding dropout to
the stacked LSTM variant, since its initial performance on unknown data was the worst
when compared to other LSTM models, but that change did not yield better results. Finally,
Table 4.2 shows the average training time of each model and we observed that MLP was
able to converge to an acceptable mapping of the input to the output faster than the other
network models. It is, therefore, interesting to note that some of the more complex LSTM

variants went through a distinctly slower training process.

Table 4.1: Training and testing scores of neural network models.

Baseli Baseline Stchlsld StL:cTI:\;d Bidirectional
aseline idirectiona
Scores MLP 1D CNN LSTM ( Syrl;fl'll-xny) (No (Dropout LSTM
Dropout) 0.2)

Train

Score | 0.00797 | 0.00846 | 0.00798 0.00826 0.00824 | 0.00839 0.00808
(Loss)

Test

Score | 0.00670 | 0.00716 | 0.00672 0.00701 0.00689 | 0.00711 0.00677
(Loss)

Table 4.2: Average training time per epoch for each neural network configuration.

A Training Ti E h
Neural Network Type verage Training Time per Epoc
(seconds)

MLP 20

1D CNN 42

Baseline LSTM (Synchrony) 98
Baseline LSTM 120.25
Stacked LSTM 165.25
Bidirectional LSTM 269.5
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4.5 Discussion

This work presented the baseline performance comparison of neural network models for
minutely active power forecasts derived from residential data. In our supervised learning
formulation of this high frequency forecasting problem we observed that the multi-layer
perceptron performed best in terms of loss and average training time. Since MLP follows a
simpler structure and recognizes a 2D data format we can deduce that due to the selection
of a small and relevant set of input data points, the network was able to converge fast,
producing fairly accurate predictions in the output. The long short-term memory network
and its variants converged slower, possibly due to their computational complexity, since
the data relationships that we wanted to identify did not refer to data points far into the
past. We expect changes to the training and test scores when the window size and the
number of input variables increase and anticipate that LSTMs will be able to produce

accurate predictions at a higher complexity.

Our study could be useful in approaching high granularity forecasts with machine learning
methods. Since the baseline performance of neural networks was evaluated and minutely
sampled energy data was explored, we now have a starting point for further parameter
tuning and experimentation. Future work could apply grid search techniques [167] for
hyperparameter optimization in order to improve our baseline models. It would also be
useful to explore the potential of modular solutions combining the neural networks we
studied here in a pipeline-like structure, in order to investigate whether other important
aspects of the highly granular time series forecasting in the energy sector emerge. For
example, more complex neural network architectures could utilize these models in order
to enrich a dataset at the input module or in order to derive partial predictions based on

different criteria in parallelly working modules.

148

Institutional Repository - Library & Information Centre - University of Thessaly
21/05/2024 20:51:15 EEST - 3.145.11.99



Chapter 5 Structural Forecasting Framework Towards Generative

Combinatorial Modeling

5.1 Motivation

Combinatorial modeling is at the forefront of short-term energy data forecasting research
since most recent research efforts present more complex unified estimator structures
consisting of multiple models. The value of combinatorial approaches is immense since the
integration of multiple estimators could provide several improvements to the forecasting
framework. First, combinatorial estimators address the assumptions, challenges and
limitations of standalone models and develop architectures that are more resilient to the
individual weaknesses that could hinder the performance of each structure. As a result,
combinatorial approaches typically yield lower error metrics due to the discovery of more
complex time series patterns and handle outliers more efficiently. Second, these models
address energy time series diversity since different estimators could be utilized for the
interpretation of data gathered from different types of clients, buildings or energy markets.
Consequently, combinatorial estimators are more flexible and have the potential to adapt
to more demanding forecasting tasks. These observations highlight the appeal of
combinatorial modeling and are a primary source of motivation towards the introduction

of novel and performant combinatorial estimators.

On the other side of the spectrum, motivation towards the enhancement of the forecasting
framework with regards to combinatorial estimation methodologies stems from the risks
and performance challenges in the design process of those models. First, it is evident that
this research area is vast and contains a plethora of standalone models, resulting in an
expansive set of estimator combinations. Therefore, extensive experimentation and testing
need to be conducted since more performant structures could still be discovered. Following
this observation, combinatorial model design becomes an increasingly intricate task since
the selection of estimator members could be a difficult process. This difficulty could be
directly connected to the uncertainty that surrounds the inclusion of estimator members
in the combinatorial structure since the search for optimal estimators that fit a specific
forecasting task does not commonly follow a deterministic and structured approach. The

selection process is typically conducted based on expert knowledge through the
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performance evaluation of the methodologies on similar tasks or presented arbitrarily. As
a result, the focus is shifted towards time consuming experimentation for the validation of
model structure. Performance risks are prevalent in this design approach and the resulting
models lack interpretability as the basis of those experiments remains vague. Second, the
data volume and the degree of diversity present in energy time series could be linked to
the challenges of dimensionality and drift respectively. Consequently, combinatorial design
approaches need to respect the restrictions imposed by those challenges and derive

resilient solutions that preserve adequate performance.

The previously discussed combinatorial design benefits coupled with the challenges, risks
and research gaps surrounding the estimator selection process led to the examination of
an interesting combinatorial modeling scenario and the introduction of a novel
deterministic strategy for estimator selection. This scenario considers the task of total
demand forecasting in the cluster-based aggregate forecasting framework given the
consumption data of a diverse client base and highlights most of the challenging aspects in
combinatorial design. Since this task processes data from several types of clients
anonymously through this framework it is clear that a static standalone estimator would
not be able to capture all consumption patterns sufficiently. Additionally, the construction
of a combinatorial structure would not benefit from a non-deterministic or arbitrary
approach since trial-and-error experimentation as well as efficient model recalibration
would be infeasible as the client base evolves. Therefore, a structured approach for the
generation of estimator sets that could adapt to the data optimally would be beneficial in

this case.

For the purposes of this study, ensemble learning methods were utilized as the main
combinatorial methodologies since forecasting performance is more predictable and easier
to monitor in this framework. Since the optimal combination of estimators in ensemble
learning methods typically ensures a small performance improvement when compared to
standalone approaches, the evaluation of the generated estimator sets could be easily
tracked and interpreted. The deterministic selection strategy presented in this study is
influenced by the relative performance examination of the training process on peak and
non-peak indices, forming an algorithm that respects the shape of each input time series.

The proposed methodology leads to the automatic selection of optimal estimator
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combinations given an initial estimator superset and the testing of the ensemble models
on different client groups validated that this approach could achieve the expected lower
error metrics of optimal ensembles as the partial aggregate demand is predicted more
accurately for each consumer group. The following sections correspond to the introduction,

methodology, results and discussion of this published work.

5.2 Introduction to Structural Ensemble Regression for Cluster-Based Aggregate

Electricity Demand Forecasting

Smart grid technologies and applications are at the forefront of modern electricity network
research and development due to the increasing number of challenges that hinder the
performance of the traditional power grid as well as the accrescent need to transition
towards a digital ecosystem where the bidirectional flow of information between the
electricity provider and consumers is simplified. Since the penetration of renewable energy
sources introduces additional volatility that could compromise the reliability of the grid and
the increasing electricity demand from a growing number of consumers could lead to the
occurrence of irregular events such as blackouts, the centralized structure of the traditional
grid has limited control over these phenomena [168,169]. Therefore, the development of
smart grids that rely on the wide deployment of smart meters is necessary for the efficient,
adaptive and autonomous management of consumer loads in a distributed framework.
Consequently, a large volume of high dimensional sensor data are extracted from smart
meters and the efficient processing as well as prediction of electricity load are crucial tasks
that reinforce advanced transmission, distribution, monitoring and billing strategies [170].
Load forecasting tasks could be developed for different time horizons depending on the
focus of each smart grid application. In the context of real-time load monitoring, demand
response and smart energy pricing, accurate short-term predictions and point forecasts
could support energy management systems as well as decision-making models in shaping
load allocation and pricing strategies for consumer groups that share similar load profile
characteristics. Additionally, high-resolution predictions of total electricity demand could
assist in the stability of the grid through the real-time detection of irregular events,
enabling online scheduling at a higher level while preserving consumer privacy. It is equally
important to note that high-frequency demand forecasts could result in the optimization

of energy resources through the examination of total load fluctuations at a higher
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granularity as well as the optimization of bidding strategies when utility companies
purchase electricity from energy markets, enabling short-term flexibility and more efficient

market balancing [171].

Artificial intelligence and machine learning contributed significantly towards the accurate
estimation of total demand through the supervised learning task of regression analysis.
Firstly, simple linear models such as ordinary least squares linear regression [172], ridge
[173], lasso [174], stochastic gradient descent (SGD) [175] and Huber [176] estimators
search for the line of best fit that optimally describes the relationship between the
dependent and independent variables. Linear models are commonly used in large-scale
forecasting tasks due to their low computational cost and interpretability. However, these
models do not interpret complex nonlinear relationships and the impact of outliers within
the data could hinder the forecasting accuracy. Therefore, more robust methods were
developed such as the generalized median Theil-Sen estimator [177], gradient boosting
models based on decision trees such as XGBoost [178], the least angle regressor (LARS)
[179] and efficient unsupervised learning models were adapted such as k-nearest neighbor
(KNN) [180] and support vector machine models for regression (SVR) [181] in order to
achieve higher accuracy in high dimensional spaces and ensure resilience against
multivariate outliers. Secondly, neural network models such as the multilayer perceptron
[182—-184] and long short-term memory network [185] could be applied to this forecasting
task in order to capture nonlinear relationships as well as time dependencies adaptively,
operating as function approximators in a black-box approach. It is important to mention
that while the standalone performance of these models could result in predictions with low
error metrics, combinatorial and hybrid approaches such as ensemble learning could be
considered for further performance improvement when a suitable combination of models
is discovered through arbitrary selection, informed selection based on expert knowledge
and experimentation or criteria examination. Time series estimator output could be
combined in a meta-modeling framework for stacked generalization, averaged in a voting
framework or used to improve another set of estimators sequentially through boosting

[186,187].

Itis evident that since consumer load profiles are organized in high dimensional time series,

forecasting total electricity demand through the direct use of regression analysis would be

152

Institutional Repository - Library & Information Centre - University of Thessaly
21/05/2024 20:51:15 EEST - 3.145.11.99



computationally expensive and the resulting estimators would exhibit diminishing accuracy
as more load data from different types of consumers is collected. Consequently, in order
to provide solutions to the challenges of dimensionality and scalability, load forecasting
approaches in this sector utilize clustering and aggregation strategies as a preprocessing
step, altering the shape of the data before it is used for the training of estimators. Cluster-
based approaches mainly focus on the segmentation of the consumers into groups based
on similar characteristics or by utilizing heuristic algorithms. Predictions for each cluster
are extracted and summed to derive the total demand forecast. This approach may become
computationally expensive when the consumer base is large and the optimal number of
clusters remains small. However, clustering approaches are valuable to demand forecasting
since they preserve load patterns within each consumer group. Furthermore, advances in
distributed computing attempt to develop more efficient parallelizable models to offset
that computational cost [188]. Aggregation approaches attempt to develop a single
prediction model where the time series dataset is typically derived from the summation of
all consumer load profiles. This approach offers substantial benefits in terms of data
compression at the cost of prediction accuracy since the impact of the patterns found in
individual consumer time series as well as the behaviors exhibited in different clusters
could be reduced greatly in the resulting time series [189]. Combining the clustering and
aggregation methods led to the development of the cluster-based aggregate framework
where the time series for each consumer group can be aggregated before the prediction in
order to derive the estimated partial sum of total demand. This approach attempts to
balance accuracy and computational cost and presents a scalable alternative that improves

the performance of estimators as the size of the customer base increases.

In the modern power grid, the evolution of the increasingly diverse customer base coupled
with the overall complexity of the data collection process often result in datasets that
include missing values, outliers and typically exhibit structural issues due to variations in
monitoring periods and differences in the quality of the available equipment. Therefore,
the performance of load estimators depends on the dataset structure as well as the ability
of data-driven models to adapt to the given input. Consequently, a static load estimation
model may not maintain optimal performance across multiple forecasting tasks since some

components may underperform due to the unique characteristics of the input. This
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phenomenon could be easily observed in the processing of clustered time series for the
prediction of total electricity demand. The utilization of clustered time series results in
several structurally different datasets derived from different consumer groups. When the
datasets pass through a single type of estimator or a static combinatorial structure,
divergent performance metrics between partial demand predictions could be observed,
resulting in suboptimal overall performance when the values are aggregated for the
estimation of total demand. The potential failure to adapt to an individual dataset could be
more impactful in short-term and very short-term forecasting tasks since lagged features
at higher resolutions would require a higher volume of information in order to properly
capture meaningful temporal dependencies between samples. These load forecasting
issues could be connected to the challenges of data drift and concept drift in machine
learning modeling. The challenge of data drift indicates the deterioration of model
performance as the distribution of input data changes and the challenge of concept drift
denotes the difficulty of the model to adapt to the data as the mapping between the input
and the target variable changes [190,191]. These challenges could arise when load time
series are considered for the prediction of total demand since data distributions could vary
between different client types and the relationship between input and output could change
as the size of the customer base and the complexity of observed patterns increase.
Furthermore, the impact of those challenges could affect the performance of combinatorial
approaches such as ensemble learning significantly, since potential concept or data drift
across multiple datasets could result in inefficient estimator combinations that may yield
suboptimal performance when compared to standalone models due to underperforming
components. As a result, the focus should be shifted towards modular estimator structures
that utilize well-defined, criteria-based strategies in order to select estimation components
that would not underperform given a specific input, thereby reinforcing consistency.
Moreover, the implementation of estimator selection strategies would lead to less
arbitrary and less ambiguous combinatorial structures since estimator members would be

directly connected to the input data.

Several recent research projects presented interesting demand forecasting approaches
utilizing a plethora of regression estimators for centralized analysis as well as distributed

modeling in clustering and aggregation frameworks. Ceperic et al. [192] proposed a model
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input selection strategy for SVR-based load forecasting, outperforming state of the art
short-term forecasting approaches in terms of accuracy. Wijaya et al. [193] examined the
performance of linear regression, multilayer perceptron and support vector regression on
several clustering strategies for short-term load forecasting, highlighting the dependence
of the cluster-based aggregate forecasting approach on the number of clusters as well as
the size of the customer base for optimal performance. Karthika et al. [194] proposed a
hybrid model based on the autoregressive moving average and support vector machine
algorithms for hourly demand forecasting, showing reduced error metrics and increased
convergence speed through the efficient merging of those machine learning methods.
Laurinec and Luckd [195] studied the impact of unsupervised ensemble learning models on
clustered and aggregated load forecasting tasks and deduced that the adaptation of those
methods could lead to improved performance. Fu et al. [196] developed an adaptive
cluster-based method for residential load forecasting through the utilization of self-
organizing fuzzy neural networks, harnessing the unique characteristics of each cluster. Li
et al. [197] utilized subsampled SVR ensembles coupled with a swarm optimization
strategy, resulting in a deterministic and interpretable forecasting model that efficiently
combines the output of multiple predictors. Bian et al. [198] proposed a similarity-based
approach and implemented K-means clustering and fuzzy C-mean clustering for the
derivation of features based on locally similar consumer data for the training of a back-
propagation neural network. Sarajcev et al. [199] presented a stacking regressor that
combined gradient boosting, support vector machine and random forest learners for
clustered total load forecasting, signifying that the robust estimation of electricity
consumption can be achieved when a suitable model combination is discovered. Cini et al.
[200] examined the performance of the cluster-based aggregate framework on deep neural
network architectures and highlighted the suitability of this clustering approach for short-
term load forecasting. Additionally, this project raises awareness about the complex and
challenging nature of implementations involving multiple predictors in this framework for
future research. Kontogiannis et al. [201] presented a meta-modeling technique combining
long short-term memory network ensembles and a multilayer perceptron to forecast
power consumption and examine the impact of causality and similarity information
extracted from client load profiles. This project presented a novel strategy for the

decomposition of load data into causal and similar components, resulting in a

155

Institutional Repository - Library & Information Centre - University of Thessaly
21/05/2024 20:51:15 EEST - 3.145.11.99



combinatorial structure that outperformed the standalone load representation.
Stratigakos et al. [202] proposed a hybrid model combining time series decomposition and
artificial neural networks for efficient short-term net load forecasting. The approach
presented in this work reduced the error metrics of multi-layer perceptron and long-short
term memory network and highlighted the impact of trend, seasonal and noise time series
components. Zafeiropoulou et al. [203] proposed a pilot project that addressed the
challenges of congestion and balancing management in energy systems and provided
robust solutions that could improve resource flexibility and power system stability. Phyo et
al. [204] developed a voting regression model including decision tree, gradient boosting
and nearest neighbor estimators, resulting in improved performance when compared to
the baseline standalone predictors. This symmetrical forecasting approach achieved the
expected performance boost that is often observed in optimal ensemble models and when
compared to the autoregressive moving average model, the proposed estimator yielded
lower error metrics due to the highly performant components included in this ensemble

structure.

In this study, we focused on the high-frequency point prediction of total electricity demand
on the cluster-based aggregate framework for the development and evaluation of adaptive
and structurally flexible stacking and voting ensemble models. This very short-term
forecasting approach addresses the challenges in combinatorial forecasting models
through the processing of diverse clustered time series and the introduction of a well-
defined member selection strategy. The ensemble estimator considers several peak
detection perspectives for member selection. The membership of base learners is
determined based on the performance examination from a set of 11 candidate estimators
on subsets of training observations from the actual as well as the predicted clustered time
series, detected as peaks and non-peaks. The proposed ensemble regressors were
evaluated in a case study utilizing smart meter data from a dataset of 370 Portuguese
electricity consumers for a period of 4 years. The goal of this project is to examine the
impact of this criteria-influenced member selection strategy on the cluster-based
aggregate framework and propose alternative adaptive ensemble models that combine
knowledge extracted from different estimators based on core time series characteristics.

Since recent research efforts have deployed training performance indicators and feature-
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based criteria for member selection on centralized ensemble models, our contribution aims
to expand on this approach through the implementation of flexible ensemble estimators
constructed from different base learners on each consumer cluster. Additionally, several
adaptive hybrid modeling and meta-modeling approaches on clustered and aggregated
frameworks typically include the most prominent estimators for model fusion based on
expert knowledge or arbitrary selection. Consequently, the effect of criteria-based
ensemble structures for cluster-based aggregate load forecasting is not thoroughly
explored. Our study aims to provide meaningful insights while addressing this research gap.
Case studies and model comparisons in the literature show that a static ensemble structure
or a standalone estimator may not always yield the same level of performance stability on
all types of consumer load time series. This observation holds true in the examination of
clustered time series since each cluster needs to be processed differently in order to
capture the patterns of a specific client group efficiently. Therefore, our project considers
the fundamental characteristic of peak and non-peak detection in time series and attempts
to adjust the ensemble structure for each cluster locally, reinforcing the idea that more
modular and dynamic estimation strategies should be developed for those distributed
frameworks. The deployment of our proposed approach in real-world applications could
support advanced energy management systems and contribute towards the development
of more robust bidding strategies through the extraction of more precise total demand

analytics in short time intervals.

In Section 5.3, we present the main methodologies involved in the implementation of our
proposed models, including the ensemble learning structure for stacking and voting
regression, an overview of the cluster-based aggregate framework for total demand
forecasting, an inspection of well-known clustering evaluation methodologies and the
structure of our proposed ensemble regressors. Additionally, information about the
dataset and the definitions of error metrics are provided in this section for completeness.
In Section 5.4, we analyze the results of our experiments and evaluate the performance of
our models, comparing them to baseline standalone estimators. In Section 5.5, we discuss
the impact of the experimental results and outline the advantages and the potential
challenges of the proposed models. Furthermore, we provide insights on future research

directions that could expand on our forecasting approach and possibly enhance model
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performance for similar applications in the energy sector. Finally, in Section 5.6, we present

the conclusions derived from the experiments and the analysis of the results.

5.3 Materials and Methods

5.3.1 Stacking and Voting Ensemble Regression
Time series forecasting estimators attempt to capture linear and non-linear patterns from

the training data in order to fit a model that is able to generalize well when new
observations are tested. However, due to the coexistence of those two types of patterns,
a single estimator may not be able to achieve both good interpretation and optimal
forecasting performance. The suboptimal accuracy could be attributed to high bias,
resulting in limited approximation flexibility, or high variance, leading to larger fluctuations
in the estimated time series when value changes occur in the training data. Therefore,
models with a high bias could be prone to underfitting, resulting in poor performance on
the training and test set. Additionally, models with high variance are prone to overfitting,
resulting in optimal performance on the training set and suboptimal accuracy on the test
set. Ensemble learning methods acknowledge those potential model instabilities and
contribute to the implementation of more robust estimators that are more resilient to
noise through the combination of multiple regression models [205]. In this project, we
develop the forecasting model structure and investigate the impact of stacking and voting

ensembles on clustered aggregate load time series.

The stacking ensemble regression approach combines multiple estimators in order to
construct a meta-model that consists of multiple layers responsible for processing
estimated time series as features for the training of a new estimator. For this study, we
consider the simple two-layer stacking ensemble structure for time series regression tasks.
Layer O trains several diverse estimators commonly known as base learners and produces
a feature set of estimated time series, denoting different representations of the target
variable, forming the stacked dataset. Layer 1 usually consists of a simple model such as
linear regression that is trained on the stacked dataset in order to derive the final
predictions. Figure 5.1 presents this two-layer structure for N base learners. Multilayer

stacking extends this structure through the derivation of multiple meta-model time series
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that are utilized for the training of a subsequent estimator, following the process of the

first two layers [206,207].

Figure 5.1: Stacked ensemble regressor structure with two layers and N base

estimators.

Voting ensemble models attempt to correct highly divergent estimated time series values
through the averaging of multiple estimators. Firstly, a set of similarly performant models
is selected for the prediction of the target variable. The members of voting regression
typically share similar error metrics during training in order to preserve stable performance
after the averaging process. Secondly, a weighting strategy is applied in order to denote
the significance of each estimated time series in the final prediction. Uniform weights are
commonly considered as the default averaging strategy but more sophisticated strategies
based on the process of member selection could be explored for performance evaluation.

Figure 5.2 presents the structure of a voting regression model of N members [208,209].

Figure 5.2: Voting regressor structure for the averaging of N estimators.

Stacking and voting ensembles could result in improved performance when compared to

standalone estimators since the simultaneous reduction in bias and variance could derive
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estimated values that are closer to the actual values of the target variable. Additionally, the
combination of ensemble members that are able to independently interpret linear or non-
linear patterns leads to more robust estimators that could process more complex high-
dimensional time series data efficiently. However, the performance benefits stemming
from the implementation of an ensemble model are not guaranteed and it is commonly
observed that the wrong or arbitrary selection of ensemble members leads to suboptimal
performance. Therefore, studies that propose ensemble models based on arbitrary
membership usually undergo extensive experimentation in order to verify the results. This
work proposes a deterministic approach for member selection based on fundamental time
series components, aiming to outperform the standalone base estimators on both

ensemble approaches for clustered aggregate forecasting.

5.3.2 Cluster-Based Aggregate Forecasting Framework
Smart meter data processing is a challenging task in the development of load forecasting

models since the dimensionality of the datasets and the plethora of different consumer
types increase model complexity, resulting in a suboptimal prediction accuracy and
convergence time for several centralized approaches relying on a single estimator
structure. Therefore, cluster-based approaches attempt to divide the consumer base into
groups based on distinct time series characteristics or geographical features in order to
leverage trends within similar sets of consumers and reduce the noise by processing
consumers with different load patterns separately. This work considers the cluster-based
aggregate forecasting framework outlined in [193,200] since this method attempts to
balance the effects of data compression from aggregation models and the fine-grained
distributed prediction of clustered time series, resulting in a scalable strategy that could
lower the forecasting error as the size of the consumer base increases. Firstly, load profile
time series are clustered into k groups based on similarity distance metrics. It is important
to note that the number of clusters affects the forecasting performance of the model since
a suboptimal division of consumers could result in noisy and unbalanced datasets that
could overfit or underfit the estimators. Therefore, cluster evaluation strategies such as the
elbow method [210] and silhouette analysis [211] are often applied in this step, in order to
determine the optimal value of k and ensure that the clusters are well-separated. Secondly,

the load consumption time series in each cluster are aggregated in a single time series,
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resulting in drastically reduced dimensions and increased pattern regularity. The
aggregated time series train k estimators that output aggregate load predictions for each
cluster. Lastly, the summation of clustered predictions derives the total demand forecast
and error metrics for model evaluation are calculated based on this time series. Figure 5.3

presents the cluster-based aggregate forecasting strategy.

Figure 5.3: Cluster-based aggregate forecasting approach separating the consumer

base into k clusters of variable sizes for the prediction of total electricity consumption.

5.3.3 Cluster Evaluation Methods
Clustering approaches in load forecasting such as the cluster-based aggregate framework

utilize several evaluation methods in order to determine optimal data segmentation,
resulting in groups of similar time series. The increased homogeneity of time series
reinforces the presence of patterns in the aggregate data, reducing the noise that could be
observed when load profiles of consumers exhibiting drastically different behaviors would
be aggregated for the prediction of total demand. Additionally, energy applications based
on the processing of load features as well as projects that utilize anonymous consumer data
often face the challenge of separating the consumer set into distinct groups, since this
would help the predictive performance of forecasting models, leading to meaningful
deductions. Therefore, it is important to include some of the commonly used clustering

evaluation methods in this project such as the elbow method and the silhouette method in
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order to properly divide the client base into clusters and potentially avoid irregularities in

performance that could result in unstable error metrics.

The elbow method is an iterative process used for the selection of the optimal number of
clusters through the search for the point where an increase in the number of clusters would
not yield substantial data modeling benefits. This point is considered a threshold for
clustering algorithms since the diminishing returns from the inclusion of additional clusters
may not improve model performance. The commonly used metric in the elbow method is
the sum of squared distances between the samples in each cluster and the cluster center.
The value of this metric is calculated as the number of clusters increases and it is usually
found that the sum of squared distances decreases in every iteration. The curve formed by
those values is examined for the selection of the point after which the metric decreases

slowly, exhibiting a linear pattern [212].

The silhouette method aims to quantify the cohesion as well as separation of samples by
measuring the similarity of data points within the same cluster and the degree of
dissociation of samples from other data points found in neighboring clusters. The silhouette
coefficient is the metric calculated for the selection of the optimal number of clusters.
Given the average distance of sample i to all other samples in the same cluster denoted as
a(i) and the average distance of sample i to all the points in the closest neighboring

clusters, denoted as b (i) the silhouette coefficient is computed with the following formula:

b(i) — a(i) (5.1)
max(b(i), a(i))

s(i) =

The silhouette score derived from the averaging of the silhouette coefficient for each data
point is utilized for the iterative analysis of each number of clusters. The computation and
visualization of the silhouette score provide a robust cluster assessment, summarized in
values ranging from -1 to 1. Positive silhouette scores closer to 1 indicate sufficient
separation of samples into distinct and well-defined clusters. When the silhouette score is
close to 0, the examined samples are usually close to the decision boundary between two
neighboring clusters, denoting the ambiguity of the resulting data segmentation.
Furthermore, negative silhouette scores closer to -1 often denote incorrect cluster

assignment or the presence of outliers. Consequently, the optimal number of clusters
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corresponds to the number that resulted in the highest silhouette score [213]. However, it
is worth noting that a thorough examination of model performance should consider both
evaluation metrics and investigate the edge case of the minimum number of clusters when
the silhouette score is positive since execution time and parallelization availability could be

important factors in the deployment of forecasting applications.

5.3.4 Proposed Forecasting Model
This study examines a combinatorial forecasting approach utilizing the cluster-based

aggregate framework as the main structure for customer base segmentation and a model
selection method for the development of flexible ensemble estimators that are able to
efficiently derive total demand predictions. At the first step, the dataset containing client
load profiles is clustered using the K-means algorithm [214] based on the dynamic time
warping metric [215] in order to reinforce optimal time series similarity when client data
are collected from different start periods. A silhouette analysis and the inertia-based elbow
method were applied in order to determine the optimal number of clusters. Following the
cluster-based aggregate framework, client time series within each cluster were aggregated
to form the input dataset for the ensemble model. At the second step, ensemble
membership is determined using peak and non-peak performance evaluation. A peak
detection algorithm [216] is applied to the training set in order to detect local maxima by
the comparison of neighboring values. A subdivision of the training set is used to train a set

of estimators and evaluate their predictive potency on peak and non-peak indices.

The evaluation of peaks and non-peaks is quantified based on an error metric following the
examination of three sets of indices denoting three different perspectives where peak and
non-peak values are observed. The first set examines the performance of peak and non-
peak indices as they were detected by the estimated time series for each candidate
ensemble member, the second set examines the performance of peak and non-peak
indices observed in the actual time series and the third set considers the performance of
peaks and non-peaks detected exclusively in the actual time series. These sets of indices
were selected based on the intuitive assumption that peaks and non-peaks should be
detected from a relatively large and well-defined set of observations in order to derive
robust performance metrics. Therefore, in the extreme case of poor time series estimation,

the common index set for the actual and estimated load could result in a small sample that
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would provide insignificant insight towards the overall peak and non-peak performance of
the candidate ensemble members. Additionally, when this extreme scenario is considered,
the candidate estimator could be automatically eliminated since the potential inclusion of
a prediction model that yields exceedingly poor performance in the ensemble model does
not benefit the combinatorial approach. Similarly, uncertainty surrounds the consideration
of peak and non-peak values detected exclusively for each estimator since this set may not
share a strong connection to the actual time series and result in unreliable deductions.
However, in the edge case where the candidate estimators perform extremely well and
there is a great overlap of peak and non-peak positions between the actual and estimated
time series due to the optimal match of the data points, the evaluation of the remaining
indices exclusively detected in the actual time series is significant for the extraction of
additional insights that could support informed decisions for model selection since the
examination of this small region could be the deciding factor when multiple models are
highly performant. The estimator scoring the lowest error metric for each perspective set
is added to a list. consequently, lists of peak and non-peak influenced estimators are
formed, including the most performant estimators for each case. Figure 5.4 presents the
total observation space and highlights the sets of indices selected for this strategy.

Furthermore, Figure 5.5 presents the derivation of the membership lists.

(a) (b)
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(0) (d)

Figure 5.4: Set representation for the peak and non-peak model selection strategy
based on training performance. (a) Total index space of peak and non-peak
observations. The blue circle in the background denotes the total set of indices of peak
and non-peak values for the actual load time series. The red circle in the foreground
denotes the total set of indices of peak and non-peak values for the predicted load
time series. (b) The highlighted red circle denotes the first evaluation set of peaks and
non-peaks detected in each estimated time series. (c) Denotes the second evaluation
set of peaks and non-peaks detected in the actual time series. (d) Evaluation set

denoting the peaks and non-peaks exclusively detected in the actual time series.
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Figure 5.5: Ensemble membership selection process.

At the final step of this approach, ensemble regression structures adapted to each cluster
due to the membership selection strategy, derive the predicted cluster load. The ensemble
estimators could utilize the stacking or the voting paradigm in order to combine the output
of the selected ensemble members. When a stacking ensemble is utilized, the lists derived
from the member selection strategy could determine the base learners of the first level.
Therefore, three models featuring the most performant estimators from sets of peaks, non-
peaks and the joint set of indices can be evaluated. Figure 5.6 presents the structure of the
stacking ensemble when the information from the sets of indices is available. Alternatively,
the consideration of a voting ensemble could result in the development of more models
since the member selection strategy could affect the base predictors as well as the weight
strategy for the averaging of the estimated output. Consequently, six models could be
examined in this case, since each of the previously mentioned sets of indices could follow
a uniform or occurrence-based weight strategy. Figure 5.7 presents the structure of the
voting ensemble models. Lastly, Figure 5.8 presents the process pipeline of this

combinatorial forecasting approach.
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Figure 5.6: Stacking ensemble structure based on the peak and non-peak member

selection strategy.

Figure 5.7: Voting ensemble structure based on the peak and non-peak member

selection strategy.
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Figure 5.8: Process pipeline for structural ensemble regression on the cluster-based

aggregate framework.

5.3.5 Case Study
5.3.5.1 Data Overview

The proposed model was evaluated on a publicly available dataset [217] containing load
measurements for 370 Portuguese clients extracted from smart meters in 15 min intervals
for 4 years from January 2011 to December 2014, including a total of 140,256 observations.
Since some clients were monitored after 2011, load measurements were considered as
zeros. The dataset did not contain any missing values and client measurements were
converted from kW to kWh for the purposes of this study. Additionally, the time labels
follow the Portuguese time zone and at the start of daylight saving in March values
between 1:00 a.m. and 2:00 a.m. are zeros. At the end of daylight saving in October, values
between 1:00 a.m. and 2:00 a.m. aggregate the consumption of two hours. The load
profiles included in this dataset belong to different types of clients such as industrial and
residential, exhibiting different consumption patterns that could lead to the fine-grained
classification of several subcategories. Since the dataset focuses solely on load features,
the anonymity of clients is preserved. Consequently, the segmentation of the client base
through clustering is important to the efficiency of the aggregate forecasting model since
the processing of clients exhibiting similar consumption patterns could reduce the potential

noise and contribute towards faster convergence during training.

The inspection of total demand in Figure 5.9 as well as the yearly boxplot presented in
Figure 5.10 show that the aggregation of different consumer types coupled with the
difference in monitoring periods result in peaks and valleys that could be difficult to

interpret in short-term and very short-term prediction horizons. These effects become less
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impactful as the number of actively monitored consumers remains the same and the
forecasting horizon is extended since seasonal patterns can be easily discovered. However,
the requirement of a static consumer set in the modern power grid would be unrealistic
due to the continuous expansion of the client base as well as the increased diversity in
client behavior. Therefore, the examination of very short-term forecasting tasks for the
prediction of aggregate load through frameworks that aim to address these challenges

could lead to the implementation of more robust design strategies.

Figure 5.9: Total electricity demand in kWh for 370 clients.
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Figure 5.10: Boxplot of total yearly electricity demand.

The examination of the histogram and the inspection of the density plot for the aggregate
load in Figure 5.11 indicate a bimodal distribution that could be interpreted as the broader
classification of clients into residential and industrial groups. Alternatively, this distribution
could denote the sinusoidal shape of observations as the number of actively monitored
clients becomes more stable. The presence of several peaks in the density plot and the
general imbalance of samples in the bins of the histogram could confirm that this is a
challenging task for some linear forecasting models that assume a Gaussian distribution.
The implementation of a clustering algorithm could lead to more easily interpretable data
distributions, resulting in the accurate prediction of partial aggregate load. However, the
selection of estimators for the prediction of the partial aggregate load should not be
arbitrary due to irregular data distributions that might persist after the clustering step.
Therefore, the adoption of membership strategies is important for the development of
combinatorial forecasting approaches; additionally, the utilization of fundamental methods
tied to the data distribution such as peak detection could be useful in the refinement of

error metrics.
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(a) (b)

Figure 5.11: Non-temporal representation of total electricity demand samples. (a)

Total electricity demand histogram. (b) Density plot denoting bimodal distribution.

Lastly, the observation of the first order lag plot denotes relatively high autocorrelation due
to the high concentration of samples on the diagonal. Figure 5.12 suggests a positive
correlation between the time series y(t + 1) and the lag y(t) due to the positive slope of
the line formed in the graph. Therefore, autoregressive approaches could be suitable for
the prediction of total electricity demand in a very short-term time horizon since most data
points are densely concentrated in this linear shape. This could be useful information in
research projects that primarily include load features as proof of concept or due to data

availability issues.

Figure 5.12: First order lag plot comparing total electricity demand time series

y(t + 1) to the lagged total demand y(t).
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5.3.5.2 Implementation and Experiments

The forecasting problem examined in this study can be formulated as the point prediction
of total demand for the next 15 min interval based on 4 lagged observations for the
previous hour in order to define a simple and interpretable supervised learning task. This
task minimizes the impact of feature engineering and data preprocessing on the overall
performance of estimators and could allow us to focus on the performance of the cluster-
based structure through the dedicated usage of load features as the membership of
estimators changes for each cluster. The training set contained 80% of observations and
the test set 20%, following common practice for similar forecasting tasks. Since the model
focuses on very short-term predictions, the execution time for clustering needs to be fast
in order to reserve time for the tuning and recalibration of the ensemble predictors at later
steps. Consequently, monthly down-sampled load profiles were considered for the
assignment of clients into clusters. As a result, the clustering procedure could be executed
in seconds instead of several minutes when compared to weekly and daily down-sampling.
Furthermore, the utilization of K-means clustering based on dynamic time warping was
beneficial to the optimal alighnment of the time series since some clients were monitored
after 2011 and prior data entries were zeros. Following this step, silhouette and elbow
methods were utilized for the selection of the optimal number of clusters. The silhouette
score is the main metric examined in the silhouette method and ranges from -1 to 1,
denoting poor cluster assignment when the clustering method achieves a negative
silhouette score and satisfactory data separation when the value of that score is positive.
The silhouette analysis showed that the assignment of clients into clusters ranging from 2
to 10 resulted in acceptable data separation since the silhouette scores were above 0.6,
verifying the consensus of selecting an optimal number of clusters that falls within this
range and reaching a global maximum at k = 2. The elbow method based on the sum of
squared distances of the samples to their closest cluster center denotes that the selection
of a number of clusters higher than 7 for the assignment of clients would not yield
significant data modeling benefits since after that point, inertia decreases linearly at a slow
rate. We observed that clustering derived from other candidate elbow points such as k =
6 and k = 8 did not yield a significant difference in terms of error metrics in this forecasting
task when compared to k = 7. However, the significantly lower silhouette score of k = 8

could indicate data separation issues, discouraging the selection of this value for the elbow
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method and reinforcing the selection of k = 7 since this is a pivotal point after which a
significant decrease in the silhouette score occurs when this region of the inertia curve is
examined. Therefore, the performance of the ensemble learning models was examined in
the representative points of each method for 2 and 7 clusters, respectively. Figures 5.13
and 5.14 present the clustering evaluation of the silhouette and elbow methods,

respectively.

Figure 5.13: Silhouette method for clusters ranging from 2 to 20 using K-means

clustering of client load profiles based on dynamic time warping.

Figure 5.14: Inertia-based elbow method for clusters ranging from 2 to 20 using K-

means clustering of client load profiles based on dynamic time warping.

The next process of this forecasting model considers a set of 11 base regression estimators

as candidate members of the ensemble structure for each clustered aggregated load. The
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estimators were tuned based on cross-validated random search [218] on the training data,
utilizing a 5-fold time series split that returns the first f — 1 folds as the training set and
the last fold f as the evaluation set, maintaining the temporal order of observations.
Consequently, the models were configured in a way that reflects the average performance
of the best selected hyperparameters. Table 5.1 presents the methods utilized for our
experiments as well as their respective parameters based on the implementations found

on scikit-learn and xgboost packages [219,220].

Table 5.1: Base estimators and hyperparameters.

Model Hyperparameters

learning rate, maximum depth, minimum
XGBoost child weight, number of estimators,

columns sampled by tree

Linear Regression -

Linear SVR tolerance, regularization parameter C

learning rate, initial learning rate, alpha

regularization strength, maximum

SGD
iterations, loss, tolerance, penalty
parameter for regularizer selection
maximum iterations, alpha regularization
Huber Regression parameter, epsilon outlier resilience,
tolerance
LARS non-zero coefficients
maximum iterations, alpha regularization
Lasso
parameter, tolerance
Ridge alpha regularization parameter

Theil-Sen Regression -

lambda weight precision, alpha noise
Bayesian Ridge
precision
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leaf size, number of neighbors, power
K-Neighbors Regression
parameter of Minkowski metric

The training set was segmented for the peak and non-peak detection and evaluation
following the previously mentioned time series split and mean absolute error was selected
as the error metric for the quantification of predictive potency since the dataset contains
zeros for the time periods where some clients were not monitored. After the examination
of three different perspectives corresponding to three different sets of indices as described
in the previous subsection, three lists of estimators were formed for each cluster. The first
list contained the three most performant estimators on the sets of observations related to
peak indices, the second list included the most performant estimators on the sets of
observations associated with non-peak indices and the third list was the concatenated list
of the previous two after the removal of duplicate estimator entries. Three stacking
ensemble models were developed based on the estimators of each list with linear
regression being the second level estimator. Additionally, six voting regression models
were developed, featuring uniform and occurrence-based weighting strategies based on
the concatenated membership list. All models featuring the tuned ensemble members

were trained on the full training set of observations and evaluated on the holdout test set.

This project was developed in Python 3.8.8 using the packages pandas 1.2.3, numpy 1.21.5
and scipy 1.7.3 for data processing, tslearn 0.5.2 for clustering, scikit-learn 1.0.2 and
xgboost 1.3.3 for predictive modeling and matplotlib 3.5.1 for visualization. The model
implementation and the experiments were executed on a desktop computer with an AMD
Ryzen 1700X processor, 8 gigabytes of RAM, and an NVIDIA 1080Ti graphics processor.
Additionally, the code of this forecasting approach and case study is publicly available on

GitHub [221].

5.3.6 Performance Metrics
In this section, we outline the main performance metrics utilized for the evaluation of all

nine ensemble estimators in the cluster-based aggregate framework. Firstly, MAE [87] is
utilized for the peak and non-peak influenced member selection as well as the final
ensemble evaluation since it is a common and simple loss function that measures the

average error of continuous variables without considering error direction.
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Furthermore, MAPE [88] is included for the generalized measurement of relative error
since it is an interpretable scale-independent metric. The usage of MAPE is restricted to the
evaluation of the total demand for the final ensemble models due to the existence of zeros
in some of the clustered time series. Secondly, MSE [222] and RMSE [223] are included as
guadratic scale-dependent loss functions that could denote the impact of large errors since
errors are squared before they are averaged. Additionally, the simultaneous examination
of MAE and RMSE could determine the variation of errors for the ensemble models since a
large difference between the values of those metrics could denote great variance in the

individual errors of the test sample, indicating the occurrence of large errors.

5.4 Results

In this section, we analyze the performance of the ensemble models by providing an
overview of the error metrics based on the data available in this case study. Since this
project focuses on the implementation of a deterministic membership selection technique
on stacking and voting ensembles, all nine ensemble estimators discussed in the
experiments presented earlier are compared to the standalone estimators in the cluster-
based aggregate framework in order to distinguish the most efficient ensemble structures
and outline the potential performance benefits of this approach. The main motivation for
the development and subsequent comparison of those models stems from the uncertainty
that some values could introduce during the training of estimators, resulting in regions
where suboptimal fitting could occur. Intuitively, unstable estimator performance could be
observed in regions where local maxima could be detected due to the sudden change in
the value of electricity consumption or due to the irregularity of the consumption pattern,
resulting in large errors. Therefore, the prioritization of points or regions where peaks are
not observed would be considered as a safer starting point for the fair performance
comparison of base learners and the examination of optimization benefits through the
combination of multiple estimated time series. Since the discovery of base learner
combinations that reduce the forecasting error in a given machine learning task is a
challenging process and a given ensemble structure does not guarantee improved
performance when applied to different datasets, adaptive ensembles could result in more
robust estimation and the examination of fundamental time series characteristics such as

peak and non-peak points could lead to flexible ensemble structures that yield
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performance benefits when diverse time series are processed, such as the clustered load
of different client types. The performance comparison includes the computation of MAPE,
MAE, MSE and RMSE for all models. The stacking ensembles utilizing the list of best peak
estimators, the list of best non-peak estimators and the merged list containing a single
instance of all members from both lists, are labeled as SRP, SRNP and SRA, respectively.
Similarly, the voting ensemble structures featuring a uniform weight strategy are labeled
as VRUP, VRUNP and VRUA. Lastly, the voting ensemble models featuring an occurrence-
based weight strategy derived from the frequencies of estimators in the merged list before

duplicate removal are labeled as VROWP, VROWNP and VROWA, respectively.

Figure 5.15 presents the error metrics of the standalone models as well as the ensemble
structures on the optimal assignment of clients into two clusters based on the silhouette
analysis. The examination of MAPE and MSE shows that the ensemble methods following
this membership selection strategy yielded improved forecasting performance when
compared to the standalone estimators. Additionally, the simultaneous examination of
MAE and RMSE indicates that there is a small variation in the magnitude of the errors in
standalone models and each ensemble structure but the occurrence of large errors is
unlikely. The stacking and voting regressors utilizing the membership list derived from
performant non-peak estimators yielded the most distinct improvement and relatively
smaller benefits can be observed from the ensembles based on peak membership.
Furthermore, the implementation of a uniform and occurrence-based weight strategy
resulted in similar forecasting performances for voting ensembles that utilized the peak as
well as the merged membership lists. However, a more substantial difference in error
metrics can be observed in the comparison of the voting estimators utilizing the non-peak

membership list, where uniform weights resulted in lower metrics.

(a) (b)
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(c) (d)
Figure 5.15: Error metric comparison for standalone estimators and structural
ensemble models given the optimal clustering denoted by the silhouette method. The
panels present the following metrics: (a) Mean absolute percentage error. (b) Mean

absolute error. (c¢) Mean squared error. (d) Root mean squared error.

Figure 5.16 provides an overview of the error metrics derived from the inertia-based elbow
method for optimal clustering. Similar to the examination of the silhouette optimal cluster
selection, it is evident that the stacking and voting ensembles based on the non-peak
membership list yield improved performance in this forecasting task, resulting in lower
MAPE values. The values of MAE, MSE and RMSE for those models remain close to the
lowest value of the KNN regressor, denoting the overall stability of the ensemble models.
However, this observation does not hold true for all ensemble models since voting
ensembles following an occurrence-based weight strategy yielded MAE, MSE and RMSE
values closer to the average standalone predictors while yielding a smaller improvement

of MAPE, denoting fewer substantial benefits derived from the model fusion in this case.

(a) (b)

178

Institutional Repository - Library & Information Centre - University of Thessaly
21/05/2024 20:51:15 EEST - 3.145.11.99



(c) (d)
Figure 5.16: Error metric comparison for standalone estimators and structural

ensemble models given the optimal clustering denoted by the elbow method. The
panels present the following metrics: (a) Mean absolute percentage error; (b) Mean

absolute error; (c) Mean squared error; (d) Root mean squared error.

Consequently, the inspection of both optimal clustering strategies shows that the
implementation of flexible ensemble models in the cluster-based framework could improve
the overall load forecasting performance when considering ensemble members that
performed well on the prediction of non-peak observations during training. This deduction
partly verifies the intuitive assumption that regions with sudden peaks in the clustered data
may introduce a level of uncertainty which could result in unstable estimator behavior,
leading to the unfair performance evaluation of base learners for membership selection.
The uniformly weighted voting regressor based on non-peak influenced membership
achieved, approximately, a 16.5% improvement over the average MAPE value of
standalone estimators while utilizing the silhouette analysis for optimal clustering.
Similarly, the stacking non-peak influenced regressor achieved a 17.2% improvement in the
experiment. Furthermore, the experiment utilizing the elbow method for the selection of
the optimal number of clusters showed that the previously examined models yielded a
10.4% and 13.8% MAPE improvement over the average of the standalone values,
respectively. It is worth noting that in this second experiment the stacking regressor
considering the merged list of peak and non-peak influenced membership yielded an 11.9%
MAPE improvement, showing slightly better performance when compared to the VRUNP
model. The examination of those metrics denotes an overall reduction in MAPE,
comparable to the average reduction observed in the implementation of ensemble learning

for short-term forecasting over different sets of estimators in recent research results
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presented in [186] as well as [224,225]. Since the successful implementation of an
ensemble model typically yields a small improvement when compared to the best base
estimator, a similar behavior can be observed in our study, achieving approximately the
same level of error metric reduction when compared to relevant studies. The main
difference highlighted in our approach is related to the discovery and examination of
optimal base estimator sets from a wider estimator space in an attempt at eliminating the
uncertainty of the initial ensemble member selection process. Therefore, our work aims to
shift the focus from the individual proposal of specific ensemble structures to member
selection strategies that generate appropriate sets of estimators for the training of a given

time series.

5.5 Discussion

This research project examined the performance of structurally flexible ensemble
estimators on the cluster-based aggregate framework for the improvement of short-term
total demand predictions. The proposed approach implemented a membership selection
strategy focusing on the evaluation of peak and non-peak data points given different
perspectives that consider sets of observations on the actual as well as the estimated time
series derived from segments of the training set. This process resulted in the development
of nine ensemble models consisting of three stacking and six voting regression structures
that covered several ensemble member combinations. Consequently, a case study was
carried out for the evaluation of those models on a dataset including the load profiles of
370 clients. The research findings indicated that the ensemble models were able to improve
the forecasting accuracy for clustered load estimation, resulting in more robust
combinatorial structures. The experiments showed that voting and stacking ensembles
influenced by the membership set of non-peak performant base learners could provide
more significant forecasting improvements, yielding MAPE scores of 3.68 and 3.65,
respectively, when silhouette analysis is used for optimal clustering. Similarly, those models
achieved MAPE scores of 3.76 and 3.62, respectively, when an inertia-based elbow method
was utilized for optimal clustering and the stacking ensemble including peak as well as non-
peak performant base learners resulted in adequate performance, achieving a MAPE value

of 3.7.
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Since the discovery of efficient base learner combinations is not a straightforward process
and one specific ensemble structure may not guarantee the reduction in error in a given
forecasting task, we believe that this adaptive approach contributes towards the
deterministic member selection through the inspection of fundamental time series
characteristics. Additionally, it is evident that a standalone estimator may not perform well
when processing time series that exhibit different patterns, resulting in unstable overall
metrics for the aggregate values. The average performance of some robust and optimally
tuned standalone estimators could be drastically affected by the input data as well as the
data collection process. Different electricity consumer types and various data collection
characteristics such as the start of the load monitoring period could impact the prediction
accuracy and the recalibration process of the forecasting models. Consequently, it could be
observed that some estimators may outperform others with minimal context related to the
justification of the difference in performance, leading to less interpretable
implementations that follow arbitrary model selection processes. Therefore, the main
advantage of this proposed approach is the efficient combination of base learners through
a simple and well-defined process that could be seamlessly integrated in ensemble
regression tasks for the energy sector. The performance hinderances introduced by the
extreme cases where the response of a standalone estimator yields irregularly high error
metrics on certain data points are diminished through the consideration of multiple
estimated time series. Moreover, the focus is shifted towards the inspection of data points
where the estimators are expected to perform optimally, reinforcing the fairness of

comparison and setting additional criteria towards member selection in ensemble learning.

On the other side of the spectrum, there are a few disadvantages in the application of this
method that should be mentioned for completeness. Since cluster-based frameworks often
lead to computationally expensive models, the integration of flexible ensemble learners in
this paradigm could increase the computational cost due to the training and processing of
multiple estimators. Therefore, the complexity of each candidate base learner could be
restricted since the tuning, training and processing of several deep neural network
architectures and hybrid structures would increase the execution time substantially due to
the increased number of hyperparameters as well as the overall latency encountered when

loading and storing data during training, rendering them inefficient for short-term
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forecasting tasks and real time applications. However, advances in distributed computing
could remedy this issue through the parallelization of data processing tasks. It is evident
that the proposed approach could be implemented in multi-threaded distributed systems
since there is a clear distinction between standalone and aggregate tasks. Consequently,
the inspection of each base learner and the membership evaluation process for each cluster

could be easily parallelized, resulting in a scalable hybrid structure.

Future research projects could explore different time series characteristics and combine
them in order to extend the current membership evaluation strategy, resulting in the
discovery of additional ensemble structures. Since this study primarily focused on load
features, isolating their impact for the inspection of base learners in an environment
containing only the load profiles from different types of customers anonymously, the
inspection of time series elements derived from different types of features could provide
significant insights towards the development of more robust ensemble estimators,
depending on data availability. Furthermore, the proposed strategy could be applied to
multiple unclustered time series or load profiles processed in different clustering or
aggregation frameworks in order to examine the performance of adaptive peak and non-
peak ensemble learning through more diverse experiments. Lastly, the impact of several
vital parameters to the definition of the forecasting tasks could be studied, such as the
forecasting horizon, and the customer base size could be studied in an attempt at
qguantifying the scalability of this approach in different client groups as well as the versatility

of the method.

5.6 Concluding Remarks

The intricacies of very short-term total electricity demand forecasting tasks add a layer of
ambiguity to combinatorial modeling since the challenges derived from increasingly diverse
and rapidly growing client groups could hinder the efficiency of robust estimators.
Additionally, the inclusion of estimators in hybrid and combinatorial approaches is often
influenced by expert knowledge and general performance indicators in similar forecasting
tasks. Therefore, the criteria for the selection of base estimators are not explicitly linked to
the shape and the individual characteristics of a given dataset, resulting in a seemingly

arbitrary estimator selection process. This phenomenon could be easily observed in the

182

Institutional Repository - Library & Information Centre - University of Thessaly
21/05/2024 20:51:15 EEST - 3.145.11.99



implementation of ensemble learning models where small refinements to the error metrics
are expected when several estimators are optimally combined. Since this optimal
combination differs depending on the available data and the problem formulation, this

performance boost is not guaranteed and is often derived from extensive experimentation.

In this project, we presented an estimator selection strategy that generates base estimator
sets capable of achieving this performance boost through the examination of peak and non-
peak observations from multiple evaluation perspectives during training. This membership
strategy aims to adapt to different shapes of time series and output estimator groups that
outperform the standalone estimators when combined in a stacking or voting ensemble
structure. The case study presented in this work focused on the effect of load features and
utilized the cluster-based aggregate framework since the clustered time series derived
from a diverse set of clients monitored from different starting points would introduce a
degree of unpredictability between consecutive samples that would intuitively cause
certain models to underperform as the shape of the time series could be drastically
different between clusters. As a result, three stacking models and six voting models were
evaluated on a group of clustered time series for the prediction of total demand based on
the most important numbers of clusters derived from the silhouette and elbow methods.
Through our experiments, we observed that base estimator sets generated from the
proposed strategy led to consistently more performant ensemble models when the criteria
influencing the selection of estimators involved the examination of non-peak observations.
It is worth noting that in some ensemble structures the merged set of estimators selected
from the examination of peak and non-peak observations performed adequately well. In
conclusion, this work attempts to reinforce the basis of ensemble and hybrid modeling
through a well-defined and easily interpretable criteria-based approach which is tuned

based on the input time series in order to boost predictive performance.
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Chapter 6 Development and Application of a Meta-Modeling Architecture

Towards Estimation Stability and Generalization

6.1 Motivation

The extension of the forecasting framework through the inclusion of meta-modeling
processes adds significant value to short-term forecasting in the energy sector since it
enables the development of more robust estimators that could drastically improve the
generalization capabilities and the stability of predictions within the studied horizon. The
main appeal of meta-modeling approaches stems from the enhanced flexibility in the
development of the primary forecasting module. Since the role of the meta-modeling
approaches is to combine and process output data from the main forecasting module for
the derivation of the estimated target variables, the forecasting module could be
restructured and repurposed in order to capture and analyze different aspects of the time
series features. Consequently, several meta-features or alternative interpretations of the
target variables could be derived in order to form more compact datasets that

comprehensively explain the patterns of the target series.

The application of meta-modeling approaches could be useful in more complex
environments where the efficient feature dynamics could improve performance and the
omission of influential factors could introduce performance hinderances. One of the most
prominent scenarios where meta-modeling techniques could be impactful is the research
of short-term consumer load forecasts. It is evident that the prediction of consumer load
curves could be sufficiently accurate when enough influential factors are examined and
when the input dataset is derived from a high-quality data collection process. However, in
real-world applications, these requirements may not always be fulfilled, resulting in
erroneous and unreliable predictions. Therefore, the forecasting model could benefit from
additional learning stages that expose more characteristics of the time series during
training. Meta-modeling techniques could be applied in this scenario, in order to introduce
a multi-stage pipeline that initially shifts the focus towards the discovery of compact data
representations. In this scenario, data representations that address community dynamics
are not sufficiently covered through research efforts focusing on meta-modeling. The

impact of time series similarity is typically helpful in the early stages of the forecasting
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pipeline for the purposes of feature selection. Similar consumption patterns from different
clients could reinforce the generalization of the model and explain irregular time series
alignment issues that may occur during data collection. Furthermore, the examination of
causality could be used to further explore the influence that other time series might have
in the prediction of the target, denoting a more general measure of the degree of predictive
potency that is not severely penalizing data abnormalities. Both influential factors are not
sufficiently examined within the scope of meta-modeling design for the exploration of
community dynamics that may affect individual load forecasts. This research gap leads to
the underutilization of available knowledge, since the role of a consumer within a
community and data that could indirectly be related to a specific load curve may have

significant value to the overall performance of the forecasting pipeline.

The contribution analyzed in this chapter attempts to address this research gap through
the design and development of a novel meta-modeling approach that considers the factors
of similarity and causality in order to derive alternative target time series components that
could be combined in order to boost accuracy and stability of the target prediction within
short time intervals. This case study considers real-world consumer data where poor data
collection quality could result in higher error metrics, rendering the convergence of
regression models more difficult. The following sections correspond to the introduction,

methodology, results and discussion of this meta-modeling approach.

6.2 Introduction to a Meta-Modeling Power Consumption Forecasting Approach

Combining Client Similarity and Causality

Data analysis and forecasting models are the cornerstones of research in the energy sector
since they enable the development of sophisticated applications and strategies that
optimize the flow of energy on the grid and improve the quality of life of electricity
consumers. Modern data-driven approaches rely on the collection and processing of client
information regarding their power consumption, socio-demographic features, and various
external factors, such as weather variables, in order to examine consumption patterns and
make accurate predictions. Forecasting models focused on the prediction of power
consumption provide meaningful insights that can be utilized by electricity providers in

order to monitor and control the demand efficiently, while being able to detect and avoid
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irregular events. On a larger scale, power forecasting models allow the providers to
construct load profiles of buildings for months in advance and, based on that estimate, to
validate energy meter readings and cluster buildings into groups, contributing towards
more intelligent regional planning approaches. Additionally, smart pricing strategies can be
implemented in an attempt to adjust electricity tariffs dynamically, based on client
behavior. Price forecasting techniques complement electricity consumption models in that
spectrum, with significant contributions towards the efficient execution of regression tasks
[226-228]. Furthermore, electricity forecasts can benefit each consumer individually due
to the development of applications that allow clients to monitor and reschedule their daily
tasks flexibly in order to gain additional control over the billing process. Consequently,
there is a growing interest for the development of accurate and robust power forecasting
models that are able to extract useful information from the underlying patterns and

relationships of the collected energy data [229-231].

Energy data used in the design of forecasting models is commonly structured in the form
of time series, where records consist of relevant features indexed in time order. Classical
time series forecasting methods such as autoregression (AR) [232], moving-average (MA)
[233], and autoregressive moving average (ARMA) are often used to predict the next time
step in a univariate sequence modeled as a linear function of information extracted from
previous time steps. Moreover, the autoregressive integrated moving average (ARIMA)
method and its extensions [234] utilize differencing in the observations of previous time
steps. Vector autoregression (VAR) models constitute a generalization of AR models since
they support multivariate time series. A similar generalization is observed in vector
autoregression moving-average models (VARMA) [235]. Additionally, simple exponential
smoothing (SES) [236] and Holt Winter’s exponential smoothing (HWES) [58] model the
next time step as an exponentially weighted linear function of past observations.
Traditional methods, such as AR, MA, ARMA, VAR, VARMA, and SES, usually do not utilize
the trends and seasonal patterns of the input sequence and, while their extensions and
variants can integrate those elements to construct more sophisticated models, there are
more limitations associated with those methods. The limitations of those statistical
methods mainly revolve around the structure of the available data, the relationship

between input and output variables, and the ability to support highly dimensional time

186

Institutional Repository - Library & Information Centre - University of Thessaly
21/05/2024 20:51:15 EEST - 3.145.11.99



series [237,238]. Since classical forecasting models do not support missing values, data
imputation techniques need to be implemented, thus altering the original dataset.
Furthermore, traditional models often generate predictions based on the assumption of a
linear relationship between the input and output variables, thereby omitting the more
complex non-linear patterns and trends. Lastly, these classical methods are observed to be
more suitable on univariate sequences in terms of performance, rendering the design and
generalization process for more complex environments more difficult. It is clear that due
to the complexity, availability, and structure of many energy datasets, most traditional

approaches would not suffice for the derivation of accurate predictions.

On the other side of the spectrum, advances in artificial intelligence and machine learning
led to the development of more robust models, which are capable of discovering complex
relationships between input and output features. Many different architectures involving
neural networks, such as the multilayer perceptron (MLP) [140] and long short-term
memory (LSTM) network [239], were used successfully in many time series forecasting
tasks, achieving impressive performance [185]. These neural network models follow a
black-box approach in the approximation of nonlinear functions. The multilayer perceptron
finds frequent application in regression, classification, and fitness approximation tasks with
an emphasis on learning to map the set of inputs to the set of outputs. Long short-term
memory networks take advantage of the temporal data characteristics in order to extract
insights from the order dependencies that could be present in a sequence. The suitability
of machine learning methods for energy data processing is evident since these models are
able to capture more complex patterns from highly dimensional data without the
requirement of having an optimally structured dataset. However, there are still many
challenges that limit the performance of these models, and ongoing research attempts to
address them. The lack of data needed to train a model successfully in combination with
potentially missing values could hinder the performance of neural networks due to
overfitting [240], since the model would not have an adequate number of training
examples in order to perform well when new data is tested. Additionally, feature
engineering is crucial in the design of a machine learning model, since the inclusion or
exclusion of certain variables and data transformations can have a great impact in the

learning process. Therefore, some forecasting tasks in the energy sector can have poor
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performance due to a suboptimal data collection process or limited data availability given
the forecasting horizon and the expected output. Ongoing research in the field focuses on
the introduction of novel methods and hybrid models that utilize a combination of feature
engineering techniques, architectural changes, and mechanisms that optimize the training
process, thus rendering neural network models more resilient to data abnormalities.
Additionally, there is an ongoing effort towards creating more well-structured datasets,

while minimizing data distortion and noise for energy forecasts [241,242].

There are several recent projects addressing forecasting and classification tasks with the
use of data-driven methods that often utilize neural networks and feature engineering
techniques. Choi and Lee [243] proposed a framework based on an LSTM ensemble and a
weighted combination of predictions for time series forecasting, showing that
combinatorial approaches that utilize the output of multiple neural networks can achieve
better performance compared to other popular forecasting methods. Tian et al. [244]
presented a hybrid architecture based on the combination of a LSTM and a convolutional
neural network (CNN) for short term load forecasting, improving prediction stability for
that forecasting horizon. Mujeeb et al. [245] used a deep LSTM network to create a new
load forecasting scheme for big data in smart cities, showing the capabilities of deep neural
networks on highly dimensional historic load and price data. Markovi¢ et al. [246]
reinforced the importance of optimal data aggregation by presenting a data-driven method
for the classification of energy consumption patterns based on functional connectivity
networks. Jin et al. [247] proposed an encoder-decoder model utilizing an attention
mechanism in order to learn long data dependencies from the input sequence efficiently.
Tian et al. [248] developed a forecasting model based on transfer learning, using the
outputs of already trained models for the estimation of building consumption according to
similarity measures. This project provided substantial motivation towards research on
meta-modeling techniques that could improve the accuracy of the predicted smart meter
readings. Chen et al. [249] proposed a time series forecasting model that explored the
impact of Granger causality for stock index predictions. This work presented interesting
ideas on the use of causality in prediction models and could be extended to the field of
energy forecasts. Boersma [250] studied the correlation and impact of internal and external

factors on the prediction of household consumption using an MLP network. This project

188

Institutional Repository - Library & Information Centre - University of Thessaly
21/05/2024 20:51:15 EEST - 3.145.11.99



highlighted the importance of feature engineering as well as time resolution in the
derivation of accurate predictions. Emamian et al. [251] implemented a solar power
forecasting model using an LSTM ensemble to aggregate the predicted output of each
network, demonstrating that ensemble models can achieve higher accuracy and more
reliable results than single neural network models. Guo et al. [252] combined energy
consumption and environmental data in the development of an LSTM forecasting model.
Their study suggested that decent forecasting performance can be achieved when a good
quality dataset is available. Lastly, Tao et al. [253] proposed a hybrid short-term forecasting
model using an LSTM network for photovoltaic power predictions in conjunction with a bias
compensation LSTM in an attempt to improve the predictions based on the residual error.
This project highlighted the more positive effects of meta-modeling in neural network
design and showed that there is more useful information to be extracted from the

predicted output.

In this study, we focused on the prediction of power consumption extracted from monthly
energy meter readings for electricity clients. Since the energy meter data is often collected
monthly for each household or building, and the data collection process is dependent on
the policies of the electricity provider, it is common for the resulting dataset structure to
be problematic for most modern forecasting models. Insights and predictions are
commonly based on patterns and trends extracted from recent years of consumption.
Therefore, it is expected that a dataset containing monthly measurements might not have
sufficient records for the training process of neural networks. Furthermore, due to different
provider policies and the possibility of having a manual registration of the meter readings,
the resulting datasets often contain missing or estimated values for clients that do not have
any electric energy meters installed. Consequently, machine learning models trained on
such data would probably overfit or exhibit poor performance on both training and test
sets. The main goals of this study were: to develop a combinatorial neural network model
that manages to outperform the standard single network forecasting approach, while
avoiding overfitting; and to demonstrate the impact of feature engineering in the
implementation of a meta-modeling technique. The proposed model examined the impact
of similarity and causality among clients in an LSTM ensemble architecture in order to

derive the base, similar, and causal representations of the predicted output based on
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changes of the input feature set. Following this step, a multilayer perceptron was used to
aggregate the predicted results, in order to discover the optimal combination of those
representations that could be used to predict the actual power consumption more
accurately, by formulating a meta-model for stacked generalization. This project aimed to
stimulate further research in the design of models that do not rely on well-structured
datasets, but rather explore the inclusion of potentially helpful features that express
relationships between client time series, in order to improve the base performance of
models that would otherwise be considered suboptimal. Our work contributes towards the
study of influential features and the discovery of patterns within the communities of
electricity clients. Additionally, the examination of combinatorial forecasting approaches,
similar to the ones presented in this paper, help in the presentation of more complex ideas

and greatly expand research knowledge through the investigation of alternative models.

In Section 6.3, we analyze the main methods utilized in the implementation of the proposed
model and proceed to provide the forecasting problem framing, with appropriate
references to the dataset and performance metrics used as a case study in order to test the
performance of this approach. In Section 6.4, we discuss the results of our experiments and
evaluate the performance of our model. Finally, in Section 6.5, we highlight the impact of
the experimental results and address the advantages as well as the challenges of this
approach. Additionally, we outline some ideas for further testing and improvement of this

method for future research projects.

6.3 Materials and Methods

6.3.1 Structural Presentation of Long Short-Term Memory Networks
Long short-term memory networks [161] are a class of recurrent neural networks (RNN)

that can identify long-term dependencies among the input features. LSTM networks are
valuable tools for time series forecasting tasks, since they can perform well, when the
duration between time lags of a given sequence is unknown. Additionally, LSTMs manage
to preserve gradients throughout the computation, solving one of the main issues of RNNs,
where the gradients would vanish during the training process. The structure of an LSTM
consists of units known as the LSTM cells. Each cell contains a set of gates that can adjust

the current cell state by adding or removing information at a given time step. The cell state
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is transferred from one unit to the next, where further adjustments occur. The input gate
at time step t determines which values will be updated and stored in the cell state.
Additionally, the output gate determines which parts of the current cell state will be
transferred to the output of the cell, leading to the next unit. An overview of the LSTM cell
is presented in Figure 6.1 where each symbol corresponds to the respective symbols
explained in the formulae of section 4.3.1.3 and the multiplication as well as the addition
blocks connect the terms of each formula in this diagram. LSTM networks are trained with

back propagation through time and gradient descent [254].

Figure 6.1: LSTM Cell Structure

In the literature, several experiments were conducted with different LSTM variants,
including a variable number of units and hidden layers as well as custom training loops for
sequence forecasting. However, it is evident that, while changes in the structural
parameters of an LSTM can boost model performance and achieve faster training time
through faster convergence, stable and reliable results are derived from the aggregation of
multiple LSTMs and the construction of ensemble models [255]. Therefore, for the
purposes of this study, an LSTM ensemble was considered for the forecasting experiments
and the weighted average of the ensemble members was used for each representation of
the predicted output. It is worth mentioning that ensemble models can also yield small
performance boosts compared to the standalone LSTM, but in this project, we focused
more on the stability and reproducibility that ensembles can ensure. Figure 6.2 presents

the general ensemble LSTM structure.
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Figure 6.2: General LSTM Ensemble Structure

6.3.2 Structural Presentation of Multi-Layer Perceptron
The multi-layer perceptron is a neural network structure that follows the principles

presented in section 4.3.1.1. Time series models and applications that handle energy data
often utilize MLPs for univariate and multivariate regression tasks. Alternatively, MLP
networks can classify load profiles as well as other variables that could group clients into
distinct categories. For the purposes of this study, multi-layer perceptron was used as a
meta-modeling prediction approximator that aggregates the results of LSTM ensembles
and learns to predict the expected output through stacked generalization, in the spirit of
[206]. Figure 6.3 presents the simple MLP structure featuring an input layer, one hidden

layer and an output layer designed for univariate predictions [256].
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Figure 6.3: MLP with a single hidden layer.

6.3.3 Influential Community Factors
Feature engineering techniques [257] are useful because they contribute to the discovery

of relationships and patterns between input features. Additionally, those methods assist
towards an insightful ranking of features derived from the results of metrics and
algorithms, leading to the inclusion of the most impactful features or exclusion of the least
beneficial data records. Consequently, it is evident that the role of feature engineering
techniques is crucial in the design of performant models for most machine learning tasks.
In this study, we focused on the development of a forecasting model that utilizes the power
consumption data of clients. In the literature, studies involving external variables, such as
temperature and price, are common in this class of forecasting models and the focus is
shifted towards the impact of additional data on a specific load profile through time. While
the inspection of external variables is beneficial in the development of accurate forecasting
models, we should also consider the discovery of interrelationships among the load profiles
of clients and the overall community impact when selecting features that are extracted
from a wider pool of consumers. The exploration of this approach could lead to the design
of performant models after the investigation of features that discover associations
between the power consumption of buildings. These associations can be useful when the
data collection process is not ideal and external variables are not available. Additionally,
models based on influential community features show the relative evolution of power
consumption patterns, which is worth monitoring when electricity providers, as well as

customers, want to estimate electricity tariffs and ensure that energy meters function
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properly. For the purposes of this study, we explored the effect of two influential

community elements, namely similarity and statistical causality.

6.3.3.1 Similarity

Similarity metrics [258] quantify the structural closeness of features and rank them in order
to find the ones most similar to the given input. In power forecasting tasks, where the
similarity between the power consumption time series of clients is considered, the main
goal is to create client associations by finding the most similar power consumption time
series within the community, given the time series of one client. Since power consumption
time series can vary in length or have missing values due to irregularities that occur during
the data collection process, we can easily observe that conventional distance metrics that
assume optimal time series alignment, such as Euclidian distance, could produce a
pessimistic dissimilarity measure due to the absence of a symmetrical point-by-point match
of the time series or, in some cases, misinterpret the similarity of some time series.
Therefore, we chose to examine the soft dynamic time warping (soft-DTW) algorithm [259]
for this project. Soft-DTW is a differentiable loss function for time series and constitutes an
extension of the dynamic time warping algorithm [260] for the computation of the best
time series alignment through a dynamic programming approach. As a similarity measure,
soft-DTW considers all alignment matrices of two time series and produces a score that
encapsulates the soft-minimum of the distribution of all costs spanned by all possible
alignments. This method yields decent performance in classification and regression tasks
involving time series and is considered a useful metric that can serve different purposes in
the design and training of a neural network model. In detail, for the comparison of two
time series x and y with respective lengths n and m, given the cost matrix A(x, y), the inner
product of A, with an alignment matrix A as (4, A(x,y)), and the proposed generalized
operator min" with the non-negative smoothing parameter y, soft-DTW is computed with

the formula:

softDTW (x,y) := min{(A, A(x,y)), A€Anm} (6.1)

6.3.3.2 Statistical Causality
Causality [261] usually refers to the abstract concept that defines a relationship between

two variables, where the influence of one can partially justify the value of the other.

194

Institutional Repository - Library & Information Centre - University of Thessaly
21/05/2024 20:51:15 EEST - 3.145.11.99



Typically, when causality is present there are covert dependencies between those variables
and discovering them can be useful in the construction of forecasting models. When
variables have a simple structure and include descriptive labels, it can be easy to distinguish
the causality between them through intuition and logical reasoning, but this is not the case
for more complex data. Time series data are usually collected from complex and dynamic
systems and due to their structure, the detection, quantification, and interpretation of
causality are challenging tasks. The relationship of cause and effect in time series could
describe partial dependencies of values on the same time step as well as changes caused

to the values of one sequence due to the effect of past observations of another.

Statistical causality methods, such as Granger causality [262], attempt to determine the
forecasting potency of one series with regards to another. The derivation of this predictive
causality is a useful tool that could complement similarity measures and feature
correlations when data analysis is performed. In the scenario of power consumption
forecasting the role of statistical causality is twofold. First, models that rely on lagged
observations of consumption can distinguish the most influential lags for prediction by
eliminating the observations that fail the statistical causality tests. Second, in the scope of
a wider client pool, the forecasting potency of a lagged observation that belongs to one
client with regards to future consumption of a different client can enable data
augmentation due to the significance of the underlying patterns that led to this causal

relationship.

In this project, we utilized the Granger causality test to infer the predictive potency of
power consumption time series. The Granger causality test is a bottom-up process, where
the null hypothesis states that lagged values of a variable x do not explain the variation in
variable y, hence x does not Granger-cause y. The p values of the chi-square and F
distributions are compared to the desired statistical significance and the results can be

interpreted with the following formula:

Reject Null Hypothesis, p < 0.05 (6.2)

result = {Accept Null Hypothesis, p = 0.05
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6.3.4 Problem Framing and Proposed Design
This study focused on the design and implementation of a power consumption forecasting

model for monthly consumption predictions based on the collection of energy meter
readings from a set of clients. This model attempted to integrate neural network
architectures, feature engineering techniques, and a meta-modeling process in order to
address the main challenges of this prediction horizon, as well as the difficulties that could

arise due to a non-ideal data collection process.

Neural network models processing monthly client data with the common sliding window
approach [263] often have insufficient observations for training, resulting in models that
either overfit or have poor performance. Additionally, difficulties in the data collection
process can result in unbalanced datasets with missing values that can affect model
performance. It is also worth noting that changes in the original dataset addressing these
problems could lead to the introduction of unnecessary noise, resulting in the
misinterpretation of certain data patterns. Despite all the challenges mentioned above,
research should not be limited to good quality datasets because data availability cannot be
guaranteed for all machine learning tasks. Furthermore, the investigation of alternative
approaches that could boost model performance in a non-ideal setting is interesting since
those contributions shift the emphasis towards more robust structures that overcome data
limitations. Our proposed approach maintained the original dataset following the common
sliding window approach for predictions, while it introduced a revised model structure that

can improve model performance under non-ideal conditions.

Following the sliding window approach using an LSTM network, the client dataset
underwent the preprocessing phase, where the consumption dataset was clustered by
client and the data of the client whose consumption was to be predicted was selected. The
consumption of the client was organized into different columns representing lagged
observations of the consumption at time t — 1,t — 2, ...,t — n derived from the original
time series shifted in time. The prediction of the next month was denoted as the next
column at time t, which is the target output variable. The preprocessed dataset was split
into a training and validation set, and the data was scaled appropriately based on the
distribution of each feature, using standardization when the distribution was normal or

using normalization otherwise. The scaled features were reshaped in the form of
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[samples, timesteps, features] and passed to the LSTM network for training. Once the
model was trained, the performance of the model was evaluated on new data from the
test set and an error metric was used to determine the divergence of predictions from the
actual consumption values. Figure 6.4 presents the standard design for a forecasting model
utilizing an LSTM network and this common sliding window method that usually

underperforms due to the challenges mentioned above.

Figure 6.4: Standard design of power forecasting model using an LSTM network.

We extended the previously described method by introducing several modifications and
new components aiming at a performance boost: instead of a standalone LSTM network,
an LSTM network ensemble of n members was considered in order to derive more reliable
predictions. Each member of the LSTM ensemble features an early stopping mechanism
[264] that effectively stops the training process when the validation loss of the model stops
decreasing. This mechanism prevents overfitting and selects the epoch where the model
would achieve the best predictive performance on unseen data. The prediction of the LSTM
ensemble is the aggregate prediction of the members derived from their weighted average,
where the weights are determined using grid search [265]. This process was used on the
original feature set of lagged observations to derive the base representation of the
predicted consumption. Following this step, two different feature sets were constructed
based on the influential community factors of similarity and causality. The first feature set
contained the original lagged observations, as well as lagged observations of other clients

at the same time steps, determined by their similarity ranking based on the previously
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described soft-DTW method. The second feature set contained the original lagged
observations and lagged observations of other clients at the same time steps based on their
predictive potency as determined by a Granger causality test when the targeted effect was
the monthly consumption at time t of the original client in the training set. Those two
feature sets passed through the LSTM ensemble and produced the similar and causal
representations of the predicted consumption, respectively. Since the effects of causality
and similarity are not strictly predetermined to be positive, we implement a meta-modeling
technique that aimed to aggregate the three representations in order to create a model
that discovered a weighted combination of those representations. Intuitively, this
combinatorial model used an MLP as a meta-learner used for stacked generalization [266],
thus creating an ensemble of ensembles that was expected to yield improved performance
when compared to single layer LSTM ensembles. Figure 6.5 presents the design of the

proposed approach.

Figure 6.5: Proposed model design utilizing three LSTM ensemble sub-models in the

development of a meta-model based on an MLP network.

6.3.5 Case Study and Experiments
In this section, we present a case study used to test our proposed approach. The dataset

used for our experiments contained monthly power consumption data of clients located in

seven municipalities of Narifio, Colombia from December 2010 to May 2016, and it is freely
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and publicly available [267]. The data was collected and registered by workers of the
company Centrales Eléctricas de Narifio (CEDENAR) after manual inspection of electric
energy meters installed at the building of each individual client. The consumption
measurements were obtained from the monthly readings of those meters in kWh. The only
exception to this manual procedure happened in the case where a client did not have an
energy meter installed. In this situation, the estimated consumption derived from the
installed electric load of the connected appliances was used. Additionally, the dataset
contains socio-demographic features such as area, municipality, use, and stratum that
further describe each client. The key index that uniquely identified each client is a code that
includes a concatenation of the socio-demographic characteristics. According to the
authors of the paper that introduces the dataset, the data was processed and ready for
direct use in the implementation and testing of forecasting models. Furthermore, time
series data for each client can be extracted when the observations are clustered by the
unique code identifier. After further inspection, we deduced that this dataset was suitable
for testing since the pool of clients is sufficiently diverse, containing clients that live in rural
and urban areas, while using electricity in different environments ranging from residential
to industrial and special. Furthermore, the feature of power consumption values is equally
diverse, ranging from 1.009 to 305,687.4 kWh. Therefore, the exploration of influential
community factors, such as similarity and causality, for the individual power consumption
forecasts could be interesting as the dataset includes clients that satisfy a wider spectrum

of consumption scenarios.

Firstly, further inspection of the dataset was conducted and additional preprocessing was
necessary for the extraction of the consumption time series for each client. Clients were
clustered by code with the requirement that each date index contains one consumption
measurement for that month. Consequently, 90 clients were detected and formed a new
time series dataset. The resulting dataset fit the non-ideal scenario we wished to explore
in this project, since it contains several missing values, possibly due to the manual
registration process. Additionally, in terms of data shape, each user does not have more
than 65 consumption observations associated to the corresponding months of data
collection. Therefore, the possibility of having poor performance when training neural

network models on this dataset was high. Initial testing was conducted on single layer LSTM
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networks containing 100 units and using the Adam optimizer in the prediction of the next
monthly consumption value based on three previous months as input. The training set
consisted of the first four years of data and the test set contained the remaining months.
The result of the initial simple model, previously presented in Figure 6.4, exhibited
overfitting, thus confirming our intuition to implement the extensions that we proposed in

order to stabilize the model and improve its performance.

The problem formulation using lagged observations remained the same in order to have a
fair comparison of the modified models. The first modification was the implementation of
an early stopping mechanism that attempted to stop training the network when the error
metrics derived from the evaluation of the model on validation data after each epoch stop
decreasing. The initial number of epochs was set to 4000 and after continuous monitoring
of the error metrics from consecutive executions the patience interval, which determines
the number of epochs after no improvement to the loss function was detected, was set at
170 epochs, preventing overfitting. This patience interval remained proportionately small
when compared to the total training epochs and provided a sufficient window that allowed
the improvement of the model. However, due to the decreased training epochs, the model
yielded suboptimal performance. Therefore, the replacement of the single LSTM network
with an LSTM ensemble of n members yielded more stable and reproducible training
results and minor performance improvements. For the purposes of this study, the
ensemble contained two members in order to balance execution time and stability benefit.
The iterative increase of ensemble members only increased the execution time of our
experiments, hence the choice of two ensemble members was appropriate for this dataset.
Since the number of ensemble members was a parameter that depended on the dataset
and the model structure, future research is encouraged to perform similar experimentation
in order to establish the benefit of a larger ensemble before finalizing the model. The
output prediction of the ensemble LSTM was the weighted average prediction of the

members using grid search.

Taking this approach one step further, we explored the effects of similarity and causality
among clients by forming two additional models utilizing the same LSTM ensemble
structure as the base model. The first model focused on similarity and contained a modified

feature set, where lagged observations from the most similar clients were included
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alongside the base client. A soft-DTW ranking was used to determine the top three closest
clients that had the lowest distance scores. Intuitively, the number of the most similar
clients should remain small when compared to the total number of clients in order to
strengthen the similarity between the features used in the model. Our experiments
indicated that three clients were sufficient in the construction of a feature set that includes
power consumption values with a high likelihood of corresponding to the same electricity
usage type. Generally, the number of the most similar clients is selected based on the
dataset, with an emphasis on creating a small set of similar clients, reinforcing cohesion
between the members of the set. The second model extended the base feature set by
including lagged observations of power consumption after inspecting all other clients and
selecting the columns of lags that satisfied the previously discussed predictive efficacy
criterion, by rejecting the null hypothesis of a Granger causality test when that column was
tested against the targeted output consumption of the training set for the main client. Each
feature in every model was normalized or standardized based on the Shapiro-Wilk

statistical test [268] before training.

Since all three LSTM ensemble models share those performance hurdles due to data
limitations and the implementation of early stopping, the investigation of a combinatorial
approach was interesting due to the variety of feature sets. Therefore, a meta-learner was
developed, utilizing a single hidden layer MLP network with 100 neurons. The activation
function was the rectified linear unit (ReLU) and the optimizer was Adam. Moreover, 4000
was the selected number of epochs for training and the same early stopping mechanism
was utilized in order to prevent overfitting. The meta-learner used the output predictions
of the three LSTM ensemble models in order to discover the best weighted combination
and predict power consumption more accurately. Experiments for the comparison of those
models focused on the prediction of the power consumption of a client for the next 14
months. The comparison considered the performance of each standalone LSTM ensemble
using the base, causal, and similar feature set, respectively, as well as combinatorial models
utilizing the meta-learner for the pairwise stacked generalization of the ensembles. Finally,
the combinatorial model that utilized all three LSTM ensembles was examined and the

results are presented in the following section.
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The experiments presented in this study were implemented in Python 3.8.8, using the
packages pandas 1.2.3, numpy 1.19.2, scikit-learn 0.24.1, tensorflow 2.3.0, keras 2.4.3,
statsmodels 0.12.2 and matplotlib 3.3.4. It is worth mentioning that any model parameters
not mentioned in this section follow the default values of those packages. The models and
experiments were executed on a desktop computer with an AMD Ryzen 1700X processor,
8 gigabytes of RAM, and a NVIDIA 1080Ti graphics processor. The code of this study,
containing the implementation of this power consumption forecasting approach, is publicly

available on GitHub [269].

6.3.6 Performance Metrics
In this section, we present an overview of the performance metrics used in the evaluation

of the neural network models in order to explain their intended usage in our experiments.
The metric of MAE was utilized as the loss function for the training of our neural network
models since it is a simple measure that we can use to monitor how the divergence of
predicted values from the real values decreased after every epoch [87]. Additionally, this
metric was utilized in the final performance evaluation of the estimated time series
components in order to capture a natural measure of average error. Furthermore, MAPE
and RMSE were utilized in the performance evaluation of this meta-modeling approach in
order to examine different aspects of error in the predicted time series. The metric of MAPE
was utilized in order to provide a scale independent measurement of relative error and the
metric of RMSE was used as a secondary scale dependent indicator with attention given
only to the relative decrease of the value denoting the improved performance of the model

[88,90].

6.4 Results

In this section, we present an overview of the experimental results through figures and
error metrics that are based on the findings of the case study in order to evaluate the
combinatorial model described in this project. The experiments consisted of the random
selection of clients and the construction of individual forecasting models utilizing the base
feature set of lagged consumption observations, all pairwise combinations of the base
feature set, and the additional columns from the exploration of similarity and causality, as

well as the final combinatorial model, which utilizes all three sub-models for stacked
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generalization. Furthermore, for the clear and concise demonstration of the results, we
provide the representative comparison of those models for the predictions of 14 months
of power comparison for an individual client. It is worth mentioning that the relative boost
in performance following this method was maintained when different clients were selected
from the dataset, following the same behavior for standalone models, sub-model pairs, as
well as the combinatorial model. Additionally, the error metrics were derived as averages
from 10 consecutive executions. Since the changes in the error metric values were
miniscule, we found that 10 iterative executions were sufficient in the consolidation of

measurements.

First, in Table 6.1 we list the values of MAPE and RMSE for all the models considered in this
comparison. We can observe from the values of MAPE that, while the standalone models
exhibited fair, but not optimal results given the dataset structure and the implementation
of early stopping, the sub-model pairs contributed towards a more accurate meta-model.
Moreover, the meta-model that utilized the base, similar, and causal sub-models
performed better than all other models in this comparison, showing that the combination
of many different models based on varying feature sets can result in a performance boost.
The secondary performance metric values of RMSE showed a considerable decreasing
trend when we transitioned from the standalone models to pairs of sub-models and, finally,
to the three-component meta-model. The values of RMSE were justified due to the range
of power consumption values in the dataset and we mainly focused on the decreasing trend
in order to determine the improvement. Table 6.1 labels the standalone LSTM ensemble
models as base, causal, and similar depending on the feature sets used. The meta-models
utilizing pairs of LSTM ensembles are labeled as base-causal, base-similar, and causal-
similar. The final combinatorial model using all sub-model ensembles is labeled as base-

causal-similar.

Table 6.1: Performance comparison of standalone models, sub-model pairs, and

combinatorial meta-model.

Model MAPE RMSE MAE

Base 15.62 8485.73 5865.11

Causal 20.37 9749.18 7465.28
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Similar 18.06 8984.84 6595.78
Base-Causal 6.36 6333.37 2739.73
Base-Similar 6.28 3635.15 1915.17

Causal-Similar 8.62 4595.11 2747.87
Base-Causal-Similar 3.49 1697.14 1122.30

Second, Figure 6.6 presents a direct comparison of the actual and predicted values of
power consumption for the targeted output of 14 months between the standalone LSTM
ensemble models and the final combinatorial meta-model utilizing an MLP. Through this
comparison it is clear that no standalone model could get accurate predictions when
consumption values show sudden valleys and peaks, such as the areas between data points
3 and 5, as well as data points 8 and 12. The standalone models managed to capture the
decreasing and increasing patterns later in time, producing an outcome that seems to be
shifted, distorting the result. Additionally, Figure 6.7 presents a direct comparison between
the meta-models created by the combination of LSTM ensemble pairs and the meta-model
that utilized all three LSTM ensembles. The inspection of this figure could lead to some
interesting assumptions since the involvement of the base LSTM ensemble resulted in
meta-models that could adapt better to sudden decrease in consumption. Similarly, the
involvement of the component of similarity led to models that could capture the sudden
increase in consumption. While this behavior could be situational to each model for each
individual client, it shows that the combination of sub-models utilizing influential
community characteristics could lead to a better fit in the regions where simpler standalone
models would not be able to adapt that well. It is evident that the involvement of all three

sub-models led to the development of the most accurate meta-model.
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Figure 6.6: Comparison of the predicted values between the standalone models

featuring one component and the final meta-model.

Figure 6.7: Comparison of the predicted values between the sub-model pairs and the

final meta-model.

Finally, for completeness, we present the graph that shows the training history of the final
meta-model in Figure 6.8. In this graph, we observe that the loss function MAE kept
decreasing for the training and validation set. The initial training epochs were set to 4000,
but the model stopped training after 3500 epochs due to an early-stopping mechanism that

prevented overfitting.

205
Institutional Repository - Library & Information Centre - University of Thessaly
21/05/2024 20:51:15 EEST - 3.145.11.99



Figure 6.8: Training history showing the loss function of MAE for the final meta-model

utilizing similarity and causality.

6.5 Discussion

This work explored the impact of similarity and causality in the development of a
combinatorial power consumption forecasting model for electricity clients based on neural
networks. Since the proposed model focused on a more realistic approach that addressed
the main challenges in neural network model design, a case study was carried out using a
dataset that was derived from a non-ideal data collection process. The research findings
showed that, while the standard LSTM network, which only utilized lagged observations of
the main client, could overfit and exhibit suboptimal performance, the development of
meta-models based on combinations of feature sets that were influenced by the similarity
and causality could achieve a better and more stable performance. In detail, the LSTM
ensemble model utilizing only the lagged observations of the client had a MAPE of 15.62
and was outperformed by the meta-models, which utilized pairs of LSTM ensemble sub-
models. In those experiments, the meta-model that utilized the output of the LSTM
ensembles with the base and similar feature sets yielded the highest pairwise performance
with a MAPE value of 6.28. In conclusion, the final meta-model that utilized the outputs of
LSTM ensembles, which included the base feature sets as well as feature sets influenced by
similarity and causality, yielded the highest performance when compared to all other

models, achieving a MAPE of 3.49.
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The process of designing this meta-model, as well as the results of this study, contribute
greatly towards the introduction and development of more robust and complex
combinatorial models that address the current challenges of forecasting model design and
are more resilient towards the available dataset structure. This novel forecasting approach
presents ideas that mitigate important hindrances in the performance of LSTM models and
investigate the potential benefits of influential community factors, assisting in the
implementation of performant models when the available data and the prediction horizon
are far from ideal. Our project hopes to encourage further work in this field since it was
observed that the consideration of many different feature sets can achieve better
aggregated results. It is important to note that related work in this field shows that the
standalone concepts of similarity and causality can be effective in the prediction of energy
data in various horizons [270,271], but to the best of our knowledge, there are not many
available experiments that consider the combination of the two on either short-term or
long-term predictions given a group of electricity clients regardless of data structure.
Therefore, this work attempted to fill this research gap by providing useful insights given
the scenario described in the case study. Future work on this class of meta-models could
explore many different aspects, which were not available in the current dataset; for
instance, it would be interesting to study the inclusion of more detailed features, such as
occupancy and appliance information, in order to reinforce the results of similarity and
causality tests. It would also be interesting to explore the performance of the model in a
more ideal setting, where the available dataset contains consumption data from a much
wider pool of clients, without missing values, in order to inspect how the model behaves
with big data in a more ideal configuration. Finally, from the perspective of training
performance and execution time, future work could parallelize this model and execute it
on multiple graphics processors in order to inspect the improvements of the multithreaded

implementation.
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Chapter 7 Implementation of an Error Compensation Approach Towards

Prediction Improvement

7.1 Motivation

Complementing the concepts presented in the introduction of the meta-modeling
technique, a posteriori processing could be beneficial for short-term forecasting tasks in
the energy sector without the need to shift the focus of the main forecasting module. The
implementation of additional processing and estimation layers could be applied to the
output module towards the direct adjustment of estimated target time series values. This
approach could be impactful in the refinement of error and the stabilization of predictions
when the target variables are strongly affected by the seasonal patterns of the influential
features and exhibit a degree of volatility since the error component responsible for
suboptimal performance could be isolated and examined at the later stages of the
forecasting process. The a posteriori examination and subsequent estimation of error could
lead to the discovery of patterns that could manipulate the degree of randomness from
predicted residuals, resulting in more consistent error values. Additionally, these models
could derive approximation functions that generate smoother error samples, resulting in
residual error time series that are more resilient to error spikes and outliers. Therefore,
load and price time series could be predicted more accurately and consistently within the
studied forecasting horizons. It is evident that while this method has the potential to
substantially improve error metrics and resolve the performance hinderances that could
occur from the emergence of large errors, recent research projects, reviews and
benchmarks focus on standalone and hybrid structures that do not utilize this processing
step. This omission is critical as it highlights several research gaps with regards to

forecasting design and hyperparameter optimization.

Forecasting methods designed based on a priori processing principles face inevitable model
behaviors stemming from the relationship between output performance and dataset
quality. Sophisticated model structures could drastically underperform when the input
dataset does not match the assumptions of the forecasting technique or when abnormal
behaviors are exhibited in certain data regions, requiring more transformations that could

impact interpretability and convergence time negatively. Furthermore, the resulting
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models could perform differently based on the choice of different learning parameters.
These parameters need to be recalibrated when new input data is handled. It is clear that
as the standalone or hybrid estimator becomes more complex, the input data volume
increases and the studied forecasting horizon becomes shorter, recalibration is restricted
and parameter tuning becomes more difficult. As a result, highly granular predictions may
not be derived within the expected time intervals and the optimal parameter set may not
be successfully determined. The implementation of a posteriori processing techniques such
as error estimation operate at the end of the forecasting process and could be input or
model structure agnostic. These processes could derive deterministic strategies for error
minimization where the benefit yielded is dependent solely on the shape of the error
component. Consequently, when time and resource constraints are considered, the
derivation of satisfactorily accurate predictions could be derived through less
computationally expensive error refinement processes instead of the expansive search for
additional data transformations and model parameters. Alternatively, these methods could
be utilized as a feedback mechanism in order to monitor model performance through the
examination of error shape, signaling for more parameter adjustments. Since the
effectiveness of these methods depends on the structure of the error component, this

examination could highlight certain aspects that need to be altered during recalibration.

Moreover, the insufficient examination of those methods could be detrimental to the
evolution of novel hyperparameter parameter optimization strategies as the set of
hyperparameters would only be partially explored. A posteriori processing methods
estimating the error component often introduce a separate forecasting pipeline combined
with heuristics and statistical tests that consolidate the strategies involved. Therefore, the
decision parameters and the criteria that validate those methods could be included in the
search for optimal solutions for the entirety of the forecasting structure, forming a more
robust expanded set of hyperparameters. This perspective could be challenging as more
hyperparameters could increase the overall complexity and computation time of the
forecasting structure. However, through the integration of this additional forecasting layer
and the potential introduction of new hyperparameters, the boundaries and tradeoffs of

model complexity could be examined further since the path towards a balanced structure
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featuring a performant forecasting module and an adequately efficient error compensation

module at the output could be highlighted.

Considering the previous observations and research gaps, in this chapter a novel hybrid
neural network structure featuring an error compensation autoregression module is
developed for a posteriori processing towards the reinforcement of error stability and
improvement of forecasting accuracy. The case study presented in this work utilized Nord
Pool power market data for the formulation of a day-ahead electricity price forecasting
task. The proposed method contributes towards the development of more flexible hybrid
neural network models and the potential integration of the error estimation module in
future benchmarks, given a small and interpretable set of hyperparameters. The following
sections correspond to the introduction, methodology, results and discussion of this hybrid

forecasting approach.

7.2 Introduction to Error Enhanced Day-Ahead Electricity Price Forecasting

Modern energy markets follow increasingly complex processes in order to perform efficient
electricity trading that balances supply and demand while reacting to the dynamics derived
from the unique characteristics and challenges of each energy system. One of the main
challenges that urge the development of more sophisticated techniques for the
coordinated production and supply of electricity is price volatility [272]. The price of
electricity can fluctuate due to several factors and the sudden peaks and valleys in the price
curves could lead to suboptimal energy market agent behavior, hindering the ability of
those entities to execute economic transactions in the electricity market to the best of their
envisaged capacity. Some of the most notable factors that could cause price fluctuations to
include seasonal trends [273], weather conditions [274], penetration of renewable energy
sources [275], challenges involving economic growth and changes in fuel cost [276], supply
availability [277] and neighboring market dynamics [278]. It can be easily observed that
load and generation dependencies on the time of day or year as well as seasonal trends
coupled with extreme hot or cold temperatures and extreme conditions, such as hurricanes
could have a noticeable impact on the electricity price. Furthermore, the infrastructural
development of growing economies often leads to increased energy demand and electricity

costs. Additionally, electricity price fluctuations could depend on the availability of fossil
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fuels for sufficient generation. Price spikes could occur if more expensive forms of
electricity generation are used due to fossil fuel shortages. Since renewable energy sources
constitute enticing alternatives for electricity generation, the stability of each energy
source is related to the stability of electricity prices and the price fluctuation patterns vary
for each region. Lastly, the impact of neighboring markets on price volatility could be
attributed to the increased player participation and decentralization that increases the

complexity of price formation.

Real-time energy markets could be negatively affected by price volatility since market
participants could be unable to react proactively when price fluctuations and energy
transactions occur throughout the operating day. However, price volatility can be
tempered with the development of day-ahead energy markets that allow buyers and sellers
to determine and secure energy prices before the operating day [279]. Therefore, short-
term forecasting models that predict day-ahead prices are valuable for the successful
monitoring of price trends and coordination of supply and demand. Price data and
influential features are typically collected in the form of time series, following an hourly
sampling rate. Statistical methods and machine learning models contribute greatly towards
the development of accurate and robust day-ahead electricity price forecasting models
that are capable of processing time series data efficiently and handling the complexity of
those energy markets [280,281]. Forecasting models derived from statistical methods often
utilize linear regression [282] in order to model the target variable as the linear
combination of independent features. Additionally, autoregressive models [283-285]
expanded on this concept by highlighting the importance of autocorrelation between
values of the same variable from previous time steps. Machine learning models for day-
ahead forecasting often rely on the development of neural networks that operate as
function approximators and aim to detect the linear and nonlinear relationships between
the input and output features. The primary neural network types utilized for this
forecasting task include the multi-layer perceptron (MLP) [286] and the feed-forward deep
neural network (DNN) [287], long short-term memory networks (LSTM) [288] and
convolutional neural networks (CNN) [289]. The appeal of methods involving the MLP and
DNN [290] can be justified due to the ease of use and the simplicity of structure since MLPs

include fully connected layers of neurons that form a computation path from the input to
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the output, resulting in a network that is acyclic in nature. On the other hand, LSTMs are
recurrent neural networks (RNN) [291] that follow a block structure consisting of gates that
interact with the previous and next state of the network. Long short-term memory
networks are more complex when compared to fully connected feed-forward network
types, but their structure could handle temporal dependencies between time series lags of
unknown length more efficiently. Lastly, CNN networks [292] use one-dimensional
convolution to learn patterns within specific time windows and can inspect the data from
a broader perspective through data shuffling. Neural networks constitute impactful short-
term forecasting tools in the energy sector and a plethora of different standalone and

combinatorial structures are studied for fast and accurate predictions [185].

Models derived from the aggregation of previously mentioned networks form the category
of ensemble learning [293] and have substantial forecasting performance benefits. The
combination of different types of models belonging either in the statistical method or the
machine learning class with the integration of modules that contribute towards data
decomposition, feature selection, clustering, or heuristic optimization, form the class of
hybrid forecasting methods [294-296] that often succeed in the analysis of more complex
dynamics and patterns. Benchmarks in the field of day-ahead price forecasting mainly
utilize autoregressive and deep neural network models since these structures offer state-
of-the-art performance and simplicity of implementation. The evaluation of new
approaches and the process of model selection through those benchmarks rely primarily

on hyperparameter optimization, feature selection and regularization techniques [297].

Recent research projects and reviews highlighted interesting short-term electricity price
forecasting approaches that utilize elements from statistical and machine learning
methods. Alamaniotis et al. [226] proposed a multiple regression model based on relevance
vector machines for day-ahead electricity price forecasting, contributing towards the
development of optimal bidding strategies in electricity markets. Moreover, Alamaniotis et
al. [227] developed a hybrid forecasting model featuring relevance vector machines in a
linear regression ensemble method for efficient short-term price forecasting. Zhang et al.
[298] presented a forecasting method that aggregates the combined predictions from CNN
and RNN structures in a gradient boosting regressor yielding improved performance.

Additionally, this study highlighted the importance of elastic net regularization for the
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stability and reliability of this combinatorial method. Alamaniotis et al. [299] developed a
combinatorial approach that couples load and price forecasting and modifies forecasted
load demand through the implementation of smart scheduling algorithms. Chinnathambi
et al. [300] developed a multi-stage day-ahead forecasting model based on the
autoregressive integrated moving average (ARIMA) statistical approach and the
consequent residual error forecast that improves the performance of the initial predictions
for different time periods. This research project provides some useful insights on the
utilization of post-processing factors, such as the error for the improvement of statistical
methods. Chang et al. [301] proposed a forecasting model that utilizes wavelet transform
and an LSTM network featuring the stochastic gradient optimizer Adam, demonstrating
that a well-optimized recurrent neural network could capture and process the nonlinear
patterns in this task efficiently. Su et al. [302] utilized the least squares regression boosting
algorithm to predict natural gas spot prices, outperforming existing approaches, such as
linear regression. Atef and Eltawil [303] conducted a comparison between support vector
regression (SVR) and LSTM electricity price forecasting models, concluding that while both
methods could be suitable for this predictive task, the deep learning approach outperforms
the regression model in terms of error metrics. Bissing et al. [304] investigated the different
combinations of regression, namely the ARIMA and Holt-Winters models, for day-ahead
forecasting and provided some interesting results regarding the performance benefits of
hybrid implementations. Xu and Baldick [305] compared different neural network
architectures and some state-of-the-art statistical methods, concluding that neural
network models could perform better for price forecasting while yielding lower mean
absolute error. Zhang et al. [306] studied the performance of deep recurrent neural
networks for electricity price forecasts in a deregulated market, providing useful insights
on the suitability of this neural network type as a multivariate time series model. Lago et
al. [307] presented a review of state-of-the-art price forecasting models covering statistical,
machine learning and hybrid approaches. Furthermore, this research work provided a
useful open-access benchmark including a regression and a deep neural network model
that utilize hyperparameter optimization for future model comparisons. Tao et al. [253]
proposed a bias compensation LSTM network utilizing the LightBGM algorithm for feature
selection. This work contributed significantly towards the development of hybrid short-

term forecasting models since the introduction of residual error analysis for recurrent
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neural networks is a novel approach that could refine time series predictions. Vega-
Mdrquez et al. [308] approached the electricity price forecasting task from a univariate time
series perspective and tested well-known deep learning and statistical methods through
hyperparameter optimization, distinguishing LSTM, CNN and regression tree methods as
the most performant. Jiang et al. [309] utilized a decomposition-selection-ensemble
forecasting system that adapts to different data characteristics and focuses on accurate
and stable price predictions. Li et al. [310] presented a price forecasting model based on
variational mode decomposition and sparse Bayesian learning of time series, showing that
aggregate predictions derived from components featuring simple characteristics could
outperform state-of-the-art models. Pourdaryaei et al. [311] investigated the impact of
different optimization methods for day-ahead price forecasting. This research work focuses
mostly on the pre-processing and learning steps, while the impact of post-processing

optimization techniques remains unexplored.

After a thorough overview of the literature, it is important to note that while a plethora of
forecasting models exist and deep neural networks have been some of the most frequently
used models, the effect of error compensation for the state-of-the-art feed-forward DNN
is not sufficiently covered. We can observe that benchmarks and relevant studies utilize
hyperparameter optimization as well as feature selection to tune the models and achieve
lower error metrics, but fewer studies have applied post-processing techniques in order to
refine and improve the predictions. Therefore, while there are recent studies that utilize
error residuals for this short-term forecasting task, the application of this technique on the
simple yet highly performant DNN is not thoroughly explored. As a result, the potential
utilization of an error estimation module for benchmarks utilizing the DNN model as an
additional tuning tool remains an open question. In this study, we identified these research
gaps and developed a hybrid error compensation deep neural network model, the ERC—
DNN, which utilizes a feed-forward deep neural network for day-ahead electricity price
predictions, as well as an autoregression module, which operates on the hourly residual
error sequences and performs a step-by-step error estimation to refine the predicted
prices. The main goals of this research project are: (i) to showcase the improvement of
price predictions in terms of error metrics; (ii) to investigate the stability of hourly predicted

sequences after the error refinement; and (iii) to provide insights into the suitability of error
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estimation modules in modern benchmarks for future integration, when the appropriate
parameters are defined. This hybrid approach was evaluated on the dataset of the Nord
Pool market following the guidelines of the benchmark presented in [307], and through
different training scenarios that highlight the positive impact of error refinement.
Moreover, the resulting error metrics of this approach are compared to a baseline DNN
structure developed using well-known configuration and training practices in order to
achieve a similar score to the DNN benchmark with a static set of hyperparameters that
does not alter the tests and produces consistent results during recalibration. Additionally,
the error metrics of ERC-DNN are compared to the benchmark scores despite the
differences in training epochs and hyperparameter optimization in order to highlight the

overall effect of the error estimation module.

Section 7.3 presents the main methods utilized in the implementation of the proposed
forecasting approach with references to the core components of the network, as well as
information regarding the dataset and the configuration of the experiments. Furthermore,
this section defines the error metrics used to evaluate the performance of ERC—DNN.
Section 7.4 discusses the results of the experiments and compares performance metrics to
the baseline and benchmark models. Finally, in Section 7.5, the advantages, as well as the
challenges of this hybrid model, are outlined. Additionally, comments regarding the impact
of this model as a standalone project, the potential expansion of the proposed architecture,
and the integration of this model to more complex forecasting structures and open-access
benchmarks in the future are included, in the hope that they contribute to the intelligence

gathered in this area of research.

7.3 Materials and Methods

7.3.1 Feedforward Deep Neural Network
The feedforward deep neural network is an acyclic artificial neural network [312] that

follows a simple layer structure and extends the MLP architecture for the purposes of
function approximation. The base unit of the feedforward DNN is the neuron which is a
node designed to receive a specified number of inputs, perform computations and pass the
output to connected nodes found deeper in the network. The value of the output at each

node is determined by activation functions, such as the rectified linear unit and hyperbolic
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tangent [313]. The neurons of the DNN are organized into layers and the connections of
those layers denote the computation path from the input to the output. The simplest and
most frequently used DNN structure contains the input layer, where input features are
passed to the first set of neurons, several hidden layers that perform additional
computations and tune the learnable parameters of the network, and the output layer
where one or more output values are generated at each node. For the purposes of this
study, we consider the role of the feedforward DNN for the supervised learning task of
regression [314] since we focus on the prediction of the electricity price for the next day.
Based on this task, the goal of the DNN is to learn the mapping function that describes the
complex relationship between the input variables and the output variables. As a general
example, we consider the fully connected DNN presented in Figure 7.1. The DNN features
an input layer i containing k inputs, a variable number f of hidden layers h, where each
one contains a variable number of neurons z and, finally, an output layer o containing j

neurons for the predictions of j outputs.

Figure 7.1: General structure of the fully connected feedforward deep neural network.

The main learnable parameters of the DNN are the weights and biases [315]. Those
parameters are initially randomized and iteratively refined through the training process

since the network will be able to predict the output after several passes of the training
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dataset, called epochs. Weights quantify the influential strength that a change in the input
could have on the output and biases denote the difference between the generated output
and the desired output, essentially quantifying the extent to which the network assumes
that the output should have specific values. The training process of the DNN mainly follows
the back-propagation algorithm [316] where the generated output values are compared to
the desired output and the value of error, which is calculated by a plethora of pre-specified
loss functions [317], is fed back to the network, in order to adjust the weights. Since the
goal of this training process is to minimize the error function and consequently discover
the best weights, optimization methods, such as gradient descent need to be specified for

the training process.

The DNN architecture shows an impressive performance in time series forecasting tasks
and it is widely used in the energy sector as a standalone network or as a member of hybrid
and ensemble learning methods. However, the default configuration of this structure may
not always be sufficient for the generation of accurate predictions due to several training
scenarios that need to be avoided, such as the existence of local minima [318] of the error
function that could hinder the convergence of the network and the occurrence of
overfitting or underfitting that are connected to the relative complexity of the model and
the dataset structure. Most deep learning models achieve optimal performance either by
following a set of best practices or by exhaustively searching for the best training
configuration through hyperparameter optimization [319]. Some of the most important
hyperparameters include the number of neurons and layers, the choice of activation
function, the choice of optimizer and the associated learning rate [320], the number of
training epochs, regularization [321] and the application of early stopping [322]. The search
space of those hyperparameters could be large and the total training time needed for the
derivation of the best set of hyperparameters could be restrictive for models aimed at
short-term and real time forecasts. Therefore, while we often see meticulous and time
consuming hyperparameter optimization approaches being suitable for benchmarks, many
deep learning approaches rely on the results of experiments with different combinations
of best practices complemented by feature selection techniques, in order to derive their
baseline models and conduct comparisons. The interpretation of those results, given a

specified set of parameters, requires considerable effort towards the practical evaluation
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of a network and the overall demystification of the black-box structure that provides added

value to research work.

7.3.2 Autoregressive Forecasting Model and Model Selection
Autoregressive models constitute a class of simple time series models used to forecast

future values of the target variable based on previous observations of the same variable,
called lags [323]. The target variable is linearly dependent on the lags and this relationship
occurs due to some degree of correlation between lags of adjacent time steps. The number
of lags utilized in the construction of an autoregressive model determines the order of the
model and it is usually derived from the inspection of partial autocorrelations. The
maximum lag at time step t — n beyond which all other partial autocorrelations are close
to zero is often used as an indicator of the order, and the model is expected to perform
adequately when including lags up to that time step. The definition of the autoregressive
model is made complete by the estimation of the coefficients ¢; that are multiplied by each
lag, the constant term c as well as the error term &;. The estimation of those parameters is
usually achieved with the use of the ordinary least squares method [324]. In order to
present a general example, we consider the autoregressive model of order p for the
prediction of the value y,; on the next time step of the sequence formed by the variable y
with time lags ranging from y;_; to y;_,. The formula that defines this autoregressive

model given the previously mentioned parameters is the following:

p (7.1)
Ye=cC+ Z(Pi *Vioi T &

i=1

Since autoregressive models are widely used forecasting tools with several applications in
the energy sector, a few core elements need to be explored for optimal performance and
the fairness of the model selection process. First, the stationarity of the data needs to be
investigated since statistical models often perform better when no trend or seasonality is
present. Different implementations of the autoregressive model take into consideration
constant and time-dependent trends but the potential inaccurate detection of the trends
and their effects on the time series forecast could sometimes lead to larger error terms. In

this situation, the augmented Dickey—Fuller test [325] is utilized to determine the
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stationarity of a time series. According to this method, the null hypothesis assumes that a
unit root exists in a time series sample and the alternate hypothesis rejects the previous
assumption and considers that the time series is stationary. The p-value of the statistic
results in the rejection of the null hypothesis when it is lower than 0.05. Alternatively, the
comparison is between the values of the statistic and the critical values of the Dickey—Fuller
t-distribution, where the value of the statistic must be more negative than the critical
values to confirm stationarity. The stationarity criterion imposes restrictions to the
autoregressive model that could often be seen as necessary countermeasures towards the

overall reduction of uncertainty.

Second, the selection of the best autoregressive model plays a crucial role towards the
minimization of forecasting error and several information criteria could be considered for
the statistical evaluation of fithess to the data, such as the Akaike information criterion
(AIC) [326], the Bayesian information criterion (BIC) [327] and the Hannan—Quinn
information criterion (HQIC) [328]. The Akaike information criterion provides an estimation
of information loss given the number of estimated model parameters k and the maximum

value L of the likelihood function for the model with the following formula:

AIC =2k —2In(L) (7.2)

Furthermore, the Bayesian information criterion follows a similar formula with a slightly

altered first term that features the sample size n of the observed data:

BIC = kIn(n) — 2In(L) (7.3)

Lastly, the Hannan—Quinn information criterion utilizes the previously mentioned
parameters in order to derive a more consistent fitness evaluation metric when compared

to the AIC and follows the formula:

HQIC = 2kIn(In(n)) — 2In(L) (7.4)
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The selection of models with the lowest values of information criteria and the search for
lags that have high autocorrelation values could result in a more accurate estimation of the

target variable.

7.3.3 Proposed Model Structure
This research project focused on the design and implementation of a hybrid day-ahead

electricity price forecasting model based on the well-known feedforward deep neural
network architecture, with an additional error compensation module that estimates the
prediction error and contributes towards the refinement of the final prediction. At the first
step, the dataset of the model is constructed, and market data is processed in order to
derive the input features, consisting of electricity price lags and exogenous variables
relevant to the price time series, as well as the output features of the targeted electricity
price sequences for the next day. The dataset is split into training and validation sets,
undergoes normalization and is fed to the input layer of the feedforward deep neural
network. At the second step, the deep neural network is trained for m epochs featuring an
early-stopping mechanism that monitors the decrease of the loss function for the
avoidance of overfitting with a specified patience interval, proportional to the number of
epochs. Consequently, after m epochs or after the loss function stops decreasing in that
patience interval, 24 sequences are generated at the output layer, each one denoting the

electricity price prediction for the i;; hour of the next day.

At the third step, the sequences are inverted back to their original values and the residual
forecasting error for each hourly sequence is calculated from the training set. The definition
of the residual training error at every hour h for the price p of the day of interest d given
the known values of the training dataset and the predicted output is defined by the

formula:

residual __ _.expected predicted
Pa,n = DPa,n ~ DPan (7.5)

Following this step, the residual error sequences are fed to an autoregressive model for
their step-by-step estimation, resulting in the derivation of coefficients that are used to
predict the error value of the next hour based on historical error data. The final price

prediction is derived from the addition of the estimated error and the price forecast of the
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feedforward DNN. The structure of this model is presented in Figure 7.2 and this forecasting
approach is used in our case study featuring several experiments on different training
scenarios for the interpretation and analysis of the error compensation process. We refer

to this model as ERC-DNN in the remainder of this paper.

Figure 7.2: The structure of the ERC—DNN model featuring a feedforward deep neural

network and an autoregressive model for error compensation.

7.3.4 Case Study and Experiments
In this section, we present a case study consisting of several experiments used to test the

forecasting performance of the proposed ERC-DNN model and investigate the impact of
error compensation in the stability of error profiles for each hour in the day-ahead
electricity price prediction task. The dataset used for our experiments contains hourly
observations of day-ahead electricity prices, as well as the exogenous sequences that
represent the day-ahead forecast of load and the day-ahead forecast of wind generation
for the Nord Pool energy market during the time period between 01.01.2013 and
24.12.2018. The dataset is freely available in [329] and was used by the open access
benchmark of [307] to evaluate the performance of the standard feedforward deep neural
network. The data is organized according to the feature formation proposed by the
benchmark. The input features include historical day-ahead prices from the previous three
days as well as the prices from one week ago labeled as pg_1 n, Dg—2.n) Pa—3.n aNd Pg—7 p,
respectively, where d denotes the day of interest and h denotes the hour ranging from 1
to 24. Additionally, the day-ahead forecasts of the two exogenous variables are included
for the day of prediction, made available on the previous day and labeled as xcll,h and x5,

essentially defining a set of 48 features. Furthermore, historical values of each exogenous
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variable for the previous day and one week ago, labeled as xj_, Xj_7 4, X4_1, and
xﬁ_m. Lastly, a feature representing the day of the week as a binary vector with 7 elements
is included, resulting in a total of 241 input features. The output features consist of the 24
h of day-ahead electricity prices. The dataset is split into a training set of the first 3 years,
including the hourly observations from 2013 through 2016 and a validation set of the last
2 years, including years 2017 and 2018 similar to the benchmark model. According to the
review and benchmark of [307], the recommended minimum testing period for the
evaluation of electricity price forecasting models includes one year of observations since
the common practice of including a total of four weeks, one for each season, could be
unsuitable due to inadequate representation of the average model performance, the
potential exclusion of extreme events that could have an impact on dataset values and the
possibility of selecting only the weeks where the model shows improved performance.
Therefore, following these recommendations and acknowledging the two-year period used
in the benchmark, we believe that the selection of testing period in this review is a suitable
evaluation practice and utilize it for the evaluation of our model. Moreover, we
acknowledge that the training period varies between price forecasting models and select
the maximum available historical data in the remainder of this dataset for our case study
in order to have a sufficient number of observations for the convergence of the deep neural

network.

Following the guidelines of the open access benchmark, we first constructed a baseline
feedforward deep neural network of 4 layers for this multivariate time series forecasting
task. The base DNN implements a set of best practices and consists of a fixed set of
hyperparameters in order to exclude the performance benefits of hyperparameter
optimization and isolate the effects of error compensation in our comparison. The
exclusion of hyperparameter tuning at the preprocessing and training steps highlights the
role of error estimation as an additional computational layer that reinforces the
interpretability of the performance improvement through a smaller and simpler set of
parameters. It is evident that the best set of hyperparameters for a forecasting model
designed to perform well on a specific machine learning task is dependent on several
factors including the dataset, the forecasting horizon, system or application constraints and

the intended architecture. The search space for those optimal parameters is large and the
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resulting optimal set is often chosen based on the improvement of error metrics without
having a direct and easily interpretable association to the architecture of the model. On the
other hand, error estimation presents the simple concept of error refinement through the
discovery of the coefficients that define the polynomial which best fits to the residual error
sequences, providing a prediction of the error value that could correct the final prediction
of the network by bringing the initial forecast to a value closer to the target. Therefore,
error estimation operates independently from the computational structure of the deep
neural network and the search goal shifts towards the selection of parameters that could
prevent the values of error from exhibiting large variations and irregular patterns instead

of proposing a set of parameters that attempt to configure a black-box approach.

The baseline model achieves comparable performance to the open-access benchmark in
terms of error metrics as we will analyze in the following sections. The DNN structure
contains an input layer of 241 neurons, two fully connected hidden layers with 100 and 52
neurons, respectively, and an output layer with 24 neurons for the prediction of the 24
hourly sequences of the day-ahead prices. The activation function is the rectified linear unit
(ReLU) [330] and the optimizer is based on stochastic gradient descent [331] with a learning
rate of 0.0005 for the avoidance of local minima. The dataset is normalized using min-max
normalization and the neural network features an early-stopping mechanism with a
patience interval that is equal to 10% of the total number of epochs in order to ensure the
stability of predictions and the avoidance of overfitting. Figure 7.3 presents the structure
of the baseline DNN, which is used to derive the day-ahead price predictions as a core

component of the ERC-DNN model.
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Figure 7.3: Baseline deep neural network structure integrated in the ERC-DNN model

withm = 100 andn = 52.

The DNN is trained and the sequences for price prediction are generated at the output. The
experiments presented in this work consider three training scenarios, with 10, 100 and
1000 epochs, respectively, for the investigation of error compensation in a scenario where
the values of error are large and the network is not near convergence, a moderate scenario
where the error has improved but there is still room for further training and a training
scenario where the error of the network could marginally improve after a large number of
epochs. In all three experiments, the residual error sequences for each hour are calculated
and their stationarity is verified by the augmented Dickey—Fuller test. Additionally, the
inspection of the partial autocorrelation function for each error sequence reveals that after
the first 24 lags the partial autocorrelations decay to values near zero. The results of the
stationarity test as well as the observation of the partial autocorrelation function
encourage the integration of an autoregressive model for the estimation of each error
sequence. Therefore, the residual error sequences are passed to an AR model utilizing a
window of 24 lags for the prediction of the next value of error in each sequence. After the
fitting of the model to the data, the autoregression coefficients are computed and the
estimated hourly error sequences are added to the electricity price forecasts for the

refinement of the final prediction. Furthermore, the information criteria of AIC, BIC and
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HQIC were examined for the suitability of the 24-lag autoregressive model and the
potential refinement of the model selection process when a threshold for feature
autocorrelation is set at 0.2, 0.3 and 0.4. This additional experiment could contribute
towards the appropriate selection of hyperparameters that could be included in future
benchmarks adopting this technique for post-prediction processing of the model. Since
hyperparameter optimization for this type of forecasting task already considers a sizable
set of hyperparameters, the choice between the window length and the more complex
threshold inspection based on information criteria could often be an important decision
that could determine the size of the search space and the overall computational burden for
the recalibration of a model or benchmark, given that short-term and real-time forecasting
models need to recalibrate relatively fast. Figure 7.4 presents the diagram for the

autoregressive model of the ERC-DNN used in the experiments.

Figure 7.4: Diagram of the autoregressive error estimation model.

The ERC-DNN model and the experiments analyzed in this research project were
developed in Python 3.8.8, using pandas 1.2.3, numpy 1.19.2 and scikit-learn 0.24.1 for
data analysis, tensorflow 2.3.0 and keras 2.4.3 for the implementation of the deep neural
network model, statsmodels 0.12.2 for the implementation and evaluation of the
autoregressive error estimation model and matplotlib 3.3.4 for the visualization of results.
The project was executed on a desktop computer with an AMD Ryzen 1700X processor, 8
gigabytes of RAM, and a NVIDIA 1080Ti graphics processor. The code of this day-ahead

electricity price forecasting model is publicly available on GitHub [332].
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7.3.5 Performance Metrics
In this section, we outline the performance metrics utilized in our experiments for the

comparison of forecasting error and the examination of the error refinement on the
stability of error metrics for each hourly sequence of this day-ahead forecasting task. For
the purposes of this study, four error metrics were used to cover different characteristics
of the performance evaluation process. Mean absolute error was used as a loss function
for the training of the deep neural network, the configuration of the early-stopping
mechanism, as well as the evaluation of the ERC-DNN approach since it is an easily
interpretable error metric. Mean absolute percentage error was utilized for the generalized
measurement of relative error. Furthermore, the metrics of MSE and RMSE are included in
the performance evaluation of the experiments since they provide quadratic loss functions
that measure the forecasting uncertainty while focusing on the impact of large errors. The
values of MSE could express the sum of the variance and square value of bias, further
contributing to the performance analysis of a model. Additionally, the values of RMSE
increase with the variance of the frequency distribution of error magnitudes, resulting in

larger values when large error values are present [87-90,333].

7.4 Results

In this section, we present the results of the experiments with the inclusion of figures
featuring a comparison of error metrics between the ERC-DNN and the baseline DNN for
each training scenario. This comparison provides an overview of the stability and
performance refinement that occurred in each hourly price sequence after the
autoregressive error compensation module is added to the DNN architecture. Additionally,
the overall performance of the model for each scenario is presented based on aggregated
error metrics, in order to examine the generalized improvement in prediction accuracy
stemming from the error estimation process. Furthermore, the exploration of information
criteria for the selection of a refined autoregressive model is investigated and the value of
implementing a threshold method instead of the window of lagged error observations for
error estimation is discussed. Since the performance metrics did not fluctuate greatly after
consecutive executions, the results presented in this section constitute averages from 10
executions for each experiment. It is worth noting that the baseline DNN structure

presented in this work performs similarly to the DNN model of the open access benchmark
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[307] since it achieves a MAE of 1.987, a MAPE of 6.895 and an RMSE score of 3.877 after
4000 training epochs, while the DNN benchmark configuration with the lowest error
metrics achieved a MAE of 1.797, a MAPE of 5.738 and an RMSE of 3.474 after
hyperparameter optimization. Therefore, the resulting ERC-DNN model is utilizing a highly

performant neural network component for the experiments.

First, we consider the training scenario of 10 epochs. The main purpose of this experiment
is to present the effect of error compensation on the DNN forecast when the error has
larger values that fluctuate greatly from sequence to sequence. In the simple univariate
case, we could assume that this scenario refers to a network that has not reached
convergence and could be unstable or not properly trained, while in the multivariate case
we could observe that each output sequence differs greatly from the desired values and
error magnitudes vary for each hour. Error compensation has the greatest impact on this
scenario, as the accurate error estimation leads to a larger prediction refinement. In the
subplots of Figure 7.5, we can observe that after the implementation of error
compensation, large errors are no longer present, and this greatly improves the MSE and
RMSE scores of the model. Moreover, the error profile for each hourly sequence is
stabilized, resulting in an average model performance that is close to the model

performance for each hourly predicted sequence.

(a) (b)
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(c) (d)

Figure 7.5: Hourly error metric comparison between the baseline DNN and the ERC—

DNN model for 10 training epochs including: (a) MAPE; (b) MSE; (c) RMSE; (d) MAE.

The second experiment considers the training scenario of 100 epochs. In this task, the
neural network reaches a more acceptable forecasting performance with each hourly
sequence having similar error metrics. As can be observed from the subplots of Figure 7.6,
there are slight error variations between the hourly sequences showing that the network
is still unable to predict every hour of the day-ahead prediction equally well. The effect of
error compensation in the ERC-DNN improves the forecasting performance and the error
metrics are lower than those presented in the open-access benchmark. Since neural
network models on sufficiently large datasets do not typically converge after 100 epochs
and the values of error are not distinctly high, the slight error variations observed in the
baseline evaluation are passed down to the ERC—DNN. Therefore, when compared to the
10-epoch scenario, the performance of the model improved in a similar way but the

stability improvement of error among hourly sequences was not as drastic.
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(a) (b)

(c) (d)

Figure 7.6: Hourly error metric comparison between the baseline DNN and the ERC—

DNN model for 100 training epochs including: (a) MAPE; (b) MSE; (c) RMSE; (d) MAE.

The third scenario considers 1000 training epochs and refers to models that are near
finalization, where the model converges to predicted values close to the target output and
the error metrics remain relatively low. Through this experiment, we can observe that the
error metrics could follow more consistent patterns, in this case denoting that the first
hourly sequences of the day-ahead forecasting task are predicted more accurately when
compared to the last few hours. This phenomenon could be a cause of concern when the
model is deployed for real-world applications since the model could generate substantially
divergent values for the last few hours of each day. The error compensation improves the
performance of this model and flattens the previously described effect, resulting in more
consistently accurate predictions. However, it is worth noting that as the neural network is

close to reaching convergence, the error values are considerably lower, and the overall
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refinement of predictions is smaller for larger numbers of epochs. The subplots of Figure

7.7 visualize this scenario.

(a) (b)

(c) (d)

Figure 7.7: Hourly error metric comparison between the baseline DNN and the ERC—

DNN model for 1000 training epochs including: (a) MAPE; (b) MSE; (c) RMSE; (d) MAE.

Overall, we can observe that across all four performance metrics, the integration of the
error compensation module refined the predictions and resulted in improved performance
in every training scenario, denoting that better and substantially more stable error metrics
can be derived even in situations where the neural network is not close to convergence.
Table 7.1 presents the overall error metric comparison that cohesively depicts the impact

of this post-processing error estimation model.
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Table 7.1: Error metrics for the performance evaluation of the baseline DNN and the

proposed ERC-DNN.

Model Scenario MAPE MSE RMSE MAE
Base DNN 10 Epochs 25.375 130.332 11.194 8.581
ERC-DNN 10 Epochs 6.456 10.367 3.206 2.137
Base-DNN 100 Epochs 10.492 24.761 4.970 3.068
ERC-DNN 100 Epochs 4.688 6.165 2.481 1.507
Base-DNN 1000 Epochs 7.583 16.625 4.067 2.156
ERC-DNN 1000 Epochs 3.464 4.510 2.123 1.105

Hyperparameter optimization considers a large space of training parameters in search of a
combination that produces optimal error metrics after training. These parameters are
specified before the training process starts and affect the error of the model during the
training iterations. After the inspection of the results presented in this work, the argument
for the inclusion of parameters that regulate error estimation and affect the error after the
initial training is complete, such as the window of lagged observations for the definition of
an autoregressive model, or the choice of error estimation method could be valid as future
benchmarks could consider the full spectrum of error optimization, in an attempt at setting
the new standard for model comparisons, where prediction refinement becomes one of
the core final steps. However, expanding the search space and introducing additional
hyperparameters is not always a viable option, especially when we consider the potential
lack of computing power or the time restrictions imposed by the short recalibration period
of real-time models. In this study, the consideration of an autoregressive model utilizing a
window of 24 lagged observations for error estimation was a reasonable and
computationally inexpensive choice, since the total execution time of the experiments was
not dramatically increased. Additionally, the execution of the experiments considered the
parameters that could encourage the usage of an autoregressive model for this task, such
as the augmented Dickey—Fuller test of stationarity, the computation of partial

autocorrelations, and the computation of information criteria for the error estimator.
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While the search for the optimal window size based on partial autocorrelations could be
regarded as an important step in model selection, and as a potential hyperparameter in
more complex optimization problems, the investigation of different model selection
criteria could introduce additional hyperparameters is equally necessary. This work
explored the information criteria threshold selection method as an alternative to the
simpler window selection. The information criteria threshold selection method iteratively
fits the autoregressive model using lagged observations that surpass a specified
autocorrelation function threshold (ACF). The three information criteria scores of AIC, BIC
and HQIC are computed and the model that achieves the lowest score for each hourly error
sequence is selected. After examining the scores extracted from this alternative model
selection approach in Tables 7.2-7.4, we observed that in the scenario of 10 epochs, where
the error compensation model achieves the greatest prediction refinement, not all error
sequences led to improved information criteria when lagged observations over a certain
autocorrelation threshold were selected since the values depend on the error sequences
generated by the DNN. This also holds true for the 100 and 1000 epoch scenarios.
Furthermore, the improvement of the information criteria is negligible when compared to
the 24-lagged window method. Consequently, in the scenario where all hourly error
sequences were able to benefit from the threshold method, the increase in forecasting
performance would not be impactful enough to justify the computational burden of
iteratively searching for the model that satisfies that criteria. Hence, the simplicity of the
window method for autoregressive error estimation would be the preferred method for
ERC-DNN and the window size would be an appropriate hyperparameter to tune that

model.

Table 7.2: Comparison between the 24-lag window method and the threshold method
based on AIC scores for the 10-epoch scenario of ERC—DNN. Cells colored in green denote
an improvement in information criteria score while cells colored in blue denote worse

overall scores when compared to the window method.

Criterio 24 Lag ACF20.2 ACF20.3 ACF20.4
Window
AIC HO 1.9790 1.9292 1.9457 1.9593

AIC H1 2.3797 2.3523 2.3672 -
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AIC H2 2.2449
AIC H3 1.9656

AIC H4 1.8745

AIC H5 1.9847

AIC H6 1.8880

AIC H7 2.1403

AIC H8 2.1850

AIC H9 1.7241

AIC H10 1.9550

AIC H11 1.9167

AIC H12 2.1428

AIC H13 1.9478

AIC H14 2.1011

AIC H15 2.0097 1.9600 1.9786
AIC H16 1.7016 1.6398 1.6466 1.6662

AIC H18 2.1026 2.0382 2.0585 2.0754

AIC H19 2.1297 2.0518 2.0838 2.0931

AIC H20 1.8115 1.7889 _
AIC H21 2.3006 2.2009 2.2022 2.2343

AIC H22 1.9503 1.8856 1.8926 1.9041

AIC H23 1.9740 1.9508 1.9687 -

Table 7.3: Comparison between the 24-lag window method and the threshold method
based on BIC scores for the 10-epoch scenario of ERC-DNN. Cells colored in green denote
an improvement in information criteria score while cells colored in blue denote worse

overall scores when compared to the window method.

Criterio 24 Lag ACF20.2 ACF20.3 ACF20.4
Window
BIC HO 2.0017 1.9432 1.9736 -
BIC H1 1.9672 1.9173 1.9173 1.9173
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BIC H2 1.9315 1.8794
BIC H3 2.1973 2.1854

BIC H4 2.0103 1.9635

BIC H5 1.9218 1.8858 1.8889 1.9136

BIC H6 1.8862 1.8436 1.8553 1.8759

BIC H7 2.2287 2.1715 2.1715 2.1715

BIC H8 2.0533 1.9991

BIC H9 1.7851 1.7451 1.7534 1.7636

BIC H10 1.9882

BIC H11 1.9267

BIC H12 1.9583

BIC H13 2.2644

BIC H14 1.9082

BIC H15 2.0200

BIC H16 2.2123

BIC H17 1.9061

BIC H18 2.2660

BIC H19 2.2894 2.2566 2.2606 2.2723

BIC H20 2.0338 2.0195 _
BIC H21 1.9222 1.8812 1.8894 1.8964

BIC H22 2.1217 2.1079 2.1177 -
BIC H23 2.2551 2.1922 2.2201 2.2400

Table 7.4: Comparison between the 24-lag window method and the threshold method
based on HQIC scores for the 10-epoch scenario of ERC-DNN. Cells colored in green denote
an improvement in information criteria score while cells colored in blue denote worse

overall scores when compared to the window method.

Criterio 24 Lag ACF20.2 ACF20.3 ACF20.4
Window
HQIC HO 1.7015 1.6794
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HQIC H2 1.9680 1.8916 1.8972 1.9285
HQIC H3 2.1361 2.1003 2.1188 2.1306
HQIC H4 2.0807 2.0603 2.0747

HQIC H5 2.1427 2.0985 2.1003 2.1074
HQIC H6 1.9908 1.9275

HQIC H7 2.2277 2.1472

HQIC H8 1.9853 1.9692

HQIC H9 1.7594 1.7209

HQIC H10 1.9160 1.9157

HQIC H11 1.7992 1.7590 1.7652 1.7720
HQIC H12 1.7352 1.6870 1.6892 1.6954
HQIC H13 2.0105 1.9698 1.9835 2.0081
HQIC H14 2.1561

HQIC H15 2.2703

HQIC H16 2.4097

HQIC H17 1.9114 1.8745 1.8745 1.8745
HQIC H18 2.3749

HQIC H19 1.8727 1.8393 1.8588 1.8701
HQIC H20 1.9275

HQIC H21 1.9794

HQIC H22 2.0047

HQIC H23 2.1320
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7.5 Discussion

This work presented an error compensation deep neural network for the task of day-ahead
electricity price forecasting. The proposed model used an autoregressive module to
estimate hourly residual error sequences and refine and improve the predictions of the
neural network model. This approach was tested in three different training scenarios,
where the values of the error were high, moderate, and low in order to cover several
potential network behaviors, ranging from fairly unstable to nearly convergent. The ERC—
DNN vyielded impressive results, with improved error metrics in every training scenario
when compared to the baseline model. In detail, the error compensation method stabilized
the performance of the poorly trained network in the first scenario, decreasing the value
of MAE from 8.581 to 2.137. Additionally, significant performance improvements were
observed in the moderate and the longer training scenarios with the values of MAE
decreasing from 3.068 to 1.507 in the 100-epoch experiment and from 2.156 to 1.105 in
the 1000-epoch experiment. This forecasting approach resulted in improved error metrics

when compared to the benchmark results presented in [307].

The improvement of forecasting performance is not the only benefit provided by this
approach, since the error compensation method manages to create more consistent
predictions, resulting in multivariate models that can predict each hourly sequence at a
similar level of accuracy. The inclusion of an autoregressive module resulted in a clear and
interpretable approach to error improvement since it operates on the output of neural
networks. Therefore, error estimation and refinement through this approach could be
easily associated with the analysis of hourly residual error sequences instead of searching
for the optimal combination of structural parameters that configure complex deep neural
networks in a black-box approach. The design, implementation and testing of this method
provides some useful insights towards the development of more robust and stable hybrid
models, as well as the integration of error compensation as an additional optimization
option for benchmarks during post-processing. However, one potential disadvantage of
this method is the dependence on the error sequences and their characteristics. In this
project, we implemented several methods, such as stationarity and autocorrelation
analysis to ensure that the autoregressive module would behave appropriately. In

scenarios where those methods would yield inconsistent results, this approach may not
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result in substantial error improvements. As a result, we believe that the analysis of error
sequences is a crucial part that precedes the integration of that data in post-processing
techniques and should not be omitted. Since most hybrid models and benchmarks utilize
hyperparameter optimization to search for the optimal combination of parameters that
minimize the error metrics, the integration of error compensation could introduce a wide
set of additional parameters that would increase the overall complexity of the models and
potentially render that refinement more computationally expensive. While the simple
choice of the window size in an autoregressive error estimation model seems to be an
appropriate hyperparameter for the configuration of this method, the consideration of
more complex estimation methods could result in refinement techniques that greatly

hinder the execution time of those models.

The contribution of this work is not limited to the research and development of electricity
price forecasting models since there are several ways this approach could benefit market
participants and the grid. Firstly, this approach could reduce the price uncertainty of
generators while assisting them indirectly in the maximization of profit. Since generators
often need to select the highest price after inspecting offers from different markets in order
to sell the production [334], this method could lead to more informed decisions due to the
increased stability and forecasting performance. Secondly, trading companies could
develop more robust short-term contracts due to the availability of more accurate price
estimates. Lastly, the grid could benefit from more stable and accurate price predictions
since the effect of price volatility could lead to more blackouts and the urgent usage of

reserves.

This project attempted to cover several research gaps through the investigation of the error
compensation effect on the well-known DNN structure used in open-access benchmarks
and several forecasting applications. While recent studies shared a similar direction in the
implementation of error compensation on the LSTM structure [253] as well as more
traditional statistical methods for different forecasting tasks, this study considered the
feedforward deep neural network as the building block for the development of performant
forecasting models that include error estimation. The examination of the results in
conjunction with recent research findings derived from statistical and machine learning

models reinforces the concept that error estimation is a beneficial post-processing
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technique for deep learning models in the energy sector. There are several additional
aspects regarding this method that could be explored in future work. First, a wide
comparison of error estimation models ranging from simple statistical approaches to the
increasingly complex neural network models could contribute towards the optimal model
selection of the error refinement module post-training. Second, the ERC-DNN model could
be tested on many electricity markets that display different price characteristics, such as
different levels of price fluctuations in an attempt to study the effects of the unique price
curve behavior on the training error. Additionally, the inspection of distinctly different error
sequences could result in useful insights into the behavior of the model and the adaptability
to different market dynamics. Lastly, the benefits of hyperparameter optimization could be
studied in combination with error compensation, in an attempt to quantify the overall
performance improvement and the computational tradeoff for short-term and real-time

applications.
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Chapter 8 Conclusions and Future Work

8.1 Summary of Contributions

In this dissertation, the forecasting structure for regression tasks in the energy sector was
examined with emphasis on short-term load and price predictions. The main forecasting
modules and procedures involved in the forecasting pipeline were highlighted in order to
denote the significance of each module and outline the flow of information from the initial
data collection to the final output estimation. Through this examination, several challenges
and research gaps directly connected to the interpretability, scalability, flexibility and
accuracy of the most prominent forecasting methodologies in this research area were
identified. In response to those challenges, extensive model comparisons and novel design
strategies were developed towards the improvement of the main forecasting modules. The
proposed methodologies were tested in use cases where the challenges, performance
hinderances and structural intricacies of those components could be easily detected and

associated to specific forecasting scenarios.

The study of the preprocessing module highlighted the need for robust feature selection
and efficient management of uncertainty. Robust feature selection could lead to
dimensionality reduction as well as improved model performance and generalization
capability and due to the identification of the most important features. Additionally, since
several influential features in the prediction of load and price could include some degree
of uncertainty, mechanisms that are capable of generating compact sets of rules could
enhance the overall interpretability of the model, assisting in the discovery of optimal
model parameters. In this scope, we examined the role of fuzzy inference in forecasting
methods for the generation of rules that attempt to explain uncertain features and
concluded that while robust feature selection and uncertainty management could be
addressed separately, there is a connection between these challenges. Since the studied
environments in the energy sector are increasingly complex, the rules utilized for the
definition of relationships between variables could cause scalability and interpretability
issues when all input variables are considered, resulting in poor estimation performance
and rendering some forecasting tasks infeasible. Therefore, our contribution focused on

the development of a rule generation strategy that improved upon the prominent
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linearized tree structure and derived a small and accurate set of rules through the
integration of a robust hybrid feature selection method. This approach identified the most
important features in the dataset, denoting the impact of efficient feature selection
towards dimensionality reduction and utilized them for rule generation, denoting the

accurate extraction of relationships that influence the variable of load.

The study of the forecasting framework highlighted several challenges and research gaps
with regards to the type of modeling approach utilized for variable estimation. In
standalone modeling, most prominent and state-of-the-art models utilized in regression
tasks are readily available through several application programming interfaces. However,
there is uncertainty surrounding the selection of similarly performant estimators since the
learning behavior and error evaluation of those models is not fully explored for all
regression tasks through experimentation. Following this observation, it is evident that
while prominent standalone neural network structures could be used interchangeably for
some forecasting tasks, yielding satisfactory accuracy, there are some edge cases where
the usage of some classes of neural networks would not be suitable in terms of
convergence time or performance. These edge cases are not properly examined through
comprehensive comparisons, leading to confusion and poor decision-making throughout
the research process. Consequently, our contribution considers the examination of neural
network structures for minutely sampled active power predictions in order to address the
edge case of high resolution very short-term predictions where the brevity of the learning
process and the substantial adjustment of weights could impact forecasting performance.
This research work provided a comprehensive comparison that denoted the superiority of
MLP over LSTM and CNN baseline architectures in terms of accuracy and convergence time
when the sampling is highly granular for point forecasts. Through this project, the
comparison of prominent neural network models reinforced clarity and provided insight
towards the behavior of those structures, serving as the building block for more complex

architectures in this very short-term scenario.

In combinatorial modeling, the utilization of multiple estimators typically yields improved
accuracy and leads to more flexible approaches that could adapt better to the input data.
Furthermore, efficient combinatorial modeling could be impactful in forecasting tasks

where the varying patterns and distribution shifts introduce the challenges of data and
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concept drift, offering improved resilience as the parameters of the estimator members
are adjusted to optimally fit subsets of data. However, it is evident that the combination of
estimators is not always deterministic, resulting in arbitrary decision making, poor
reproducibility and interpretability. Therefore, our contribution towards the development
and implementation of a novel estimator selection strategy based on structural time series
characteristics provided a robust solution towards the generation of estimator sets that
best explain the training data and yield improved performance. This project considered the
design of stacking and voting estimators since ensemble learning approaches are some of
the most prominent methods in combinatorial modeling and provide performance benefits
that could be easily monitored. Peak and non-peak indices were the main structural
characteristics considered for estimator selection and our methodology denoted that the
ensemble approaches generated from the error metric examination of those

characteristics achieved the expected performance boost.

In meta-modeling design, the scope shift of the main forecasting structure for the
derivation of alternative time series representations and the inclusion of additional
forecasting layers that estimate the target variable add significant value to the
generalization capabilities of forecasting models and offer increased resilience towards the
initial dataset structure through the extraction of knowledge. We observed that meta-
modeling principles could be applied to short-term forecasting tasks in the energy sector
since the data collected and analyzed for the purposes of real-world applications could
have a suboptimal structure, rendering the task of pattern identification increasingly
difficult. Additionally, these datasets could contain hidden relationships between time
series features that stem from the impact of community influential factors as the data
collection process often considers time series of different types of consumers, buildings
and energy markets. Our contribution focused on the extraction of knowledge from the
examination of consumer similarity and causality for the estimation of alternative load time
series representations through LSTM ensembles that were combined to predict the target
variable through an MLP generalizer. This approach denoted that the combination of those
components vastly improved the error metrics when compared to the base model. This

performance improvement highlighted that the extraction of similar and causal load time
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series representations boosted the accuracy of the base model as the initial dataset that

isolated the features for individual consumption exhibited poor quality.

The study of the output module highlighted the intricacies of estimated time series
evaluation and interpretation since standalone, combinatorial and meta-modeling
estimators could derive suboptimal and unstable predictions due to challenges related to
dataset quality and model tuning. The risk of poor performance in a priori processing could
be mitigated through the design of complementary a posteriori methods applied to the
output module towards the improvement of model metrics and the stabilization of error
profiles. It is clear that a posteriori processing methods are not sufficiently presented in
recent short-term forecasting research projects in the energy sector and often omitted
from relative reviews. Following these observations, our contribution focused on the
design of a hybrid estimator that features a deep neural network structure for a priori
processing and an autoregressive error compensation module for a posteriori processing.
The proposed architecture was applied on the forecasting task of day-ahead electricity
price prediction and was compared to a benchmark deep neural network model that
shared the same a priori processing structure. The results denoted that the error
compensation module improved error metrics and let to more consistent predictions when
different training scenarios were considered. Consequently, this a priori strategy
highlighted the benefits of residual error estimation, deeming it essential for error
refinement. Through the experiments presented in this work, some important observations
were made towards hyperparameter tuning for both the a priori and a posteriori processing
paradigm. Moreover, this study denoted the performance challenges that may arise due to
the expansion of the parameter space with the inclusion of the error compensation
module. These challenges are directly connected to the complexity of the forecasting
structure and the time needed for recalibration and tuning. The consideration of short-
term forecasting horizons imposes time constraints that may render the deployment of
more complex estimation structures infeasible. Therefore, the development of balanced
hybrid architectures that respect the benefits of both processing paradigms while featuring
a parameter space that does not introduce performance bottlenecks at any stage should

be the goal for most estimation approaches in the future.
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Evidently, the study of recent research projects as well as the experiments conducted for
the design and development of novel forecasting strategies indicated that the prominence
of data processing methodologies and forecasting structures is directly associated with
trade-offs relevant to the structure of the energy time series and the studied research
questions. The quality and quantity of the available data denotes the preprocessing
methods that need to be included in the forecasting pipeline in order to achieve higher
compatibility between the input and the initial model assumptions. Forecasting models
that utilize an insufficient number of preprocessing techniques often result in poor training.
On the other side of the spectrum, data overprocessing may result in input datasets that
no longer capture the unique characteristics and irregularities of the studied time series,
resulting in poor generalization. Furthermore, the trade-off between execution time and
accuracy influences the selection of processing techniques and estimators since the
problem framing process in energy research and the goals of energy applications set
specific requirements. Therefore, projects utilizing input at a higher sampling rate and
requiring faster recalibration when the available computational power is limited, could
benefit from simpler forecasting architectures such as linear regressors, tree-based
estimators and their hybrid variants. Alternatively, research work and applications focusing
solely on accuracy, could utilize more complex hybrid neural network structures that
include meta-modeling techniques and attention mechanisms. Lastly, the trade-off
between model complexity and transparency needs to be considered in the development
of forecasting pipelines. Transparent architectures that feature enhanced interpretability
and explainability typically share a simpler structure and enable the thorough
understanding of forecasting mechanisms as well as clearer interpretation of results
without requiring an extensive technical background. Consequently, business and
consumer-level applications could benefit from less complex and more transparent models
since the expected behavior of the model could be easily understood through the
processing of sample data. Research efforts tend to focus on structure-agnostic
transparency, in an attempt at generating more complex models utilizing interpretable

estimation processes deterministically.
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8.2 Future Work

The examination of the short-term forecasting pipeline in the energy sector and the
contributions presented in this dissertation enable several interesting research directions
that could improve the performance of the modules involved in the forecasting structure

and introduce more robust design strategies.

In the examination of the preprocessing module our contribution focused on the selection
of the most impactful features and the detailed interpretation of influential factors through
the generation of rules. Since this study addressed the a priori analysis of features for the
derivation of optimal input sets, extensive experiments could be conducted towards the
interpretability and explainability of those features from the forecasting models after the
training process. The quantification of feature importance and the examination of metrics
that specify the degree of attention dedicated to selected sequence segments provide
insight towards the thorough understanding of the learning process. Some robust
forecasting structures such as the temporal fusion transformer already provide information
about feature interpretability through attention graphs and feature importance scores.
However, this level of comprehensive data analysis could be extended to other models and
side-by-side comparisons could denote the different decisions that led to the convergence

of each structure.

In the examination of standalone modeling, our study contributed towards the
performance analysis of edge cases that were not sufficiently explored before in terms of
accuracy, training behavior and training time, reinforcing the decision-making process for
the informed selection of estimators in similar forecasting tasks. Since the process of
estimator selection constitutes a wide research topic, future research could focus on the
detailed comparison of estimators in terms several complementary aspects such as
scalability and the compact analysis of data requirements for optimal training in a plethora
of forecasting tasks utilizing energy data. Future research efforts could contribute towards
the detailed taxonomy of forecasting methods with regards to those aspects in the form of

reviews and benchmarks that consider several edge cases such as minutely forecasting.

Furthermore, our contribution towards combinatorial modeling focused on the
development of a deterministic estimator selection strategy for ensemble regressors. This

approach considered the cross-examination of structural characteristics such as peak and
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non-peak data points. This strategy could be extended in future projects in order to
examine different time series characteristics connected to the shape of the target sequence
and the respective properties of trend and seasonal components. This estimator selection
approach could be tested on estimator sets belonging to different statistical and machine
learning subcategories. Additionally, the inspection of structural time series characteristics
could benefit the design of more complex forecasting structures such as deeper multi-stage
ensemble estimators as well as cooperative and sequential hybrid models since clarity

needs to be reinforced in the development of those architectures.

The study of meta-modeling and the development of a forecasting approach that utilizes
community influential factors for the derivation of alternative target time series
representations was tested considering full consumer anonymity and included only the
essential features needed for power consumption predictions in order to simulate real-
world scenarios where the quality and availability of consumer data are far from ideal.
However, the exploration of more descriptive client features could enable the
development of more versatile meta-modeling approaches that study impact of
community and derive more time series components that could enhance the generalization
capabilities of the surrogate model. It is worth mentioning that since the research area of
meta-modeling approaches is vast, several novel methodologies, operating on a different
context at the base forecasting structure, could be introduced in future projects. One
increasingly interesting research direction could consider the estimation of time series that
focus on the explanation of trend and seasonality components at the base estimator and

the reconstruction of the estimated target at the meta-modeling output.

Lastly, for the improvement of the output module, more robust feedback mechanisms for
the interpretation and subsequent minimization of error could be developed. Our
contribution introduced a simple autoregressive structure in order to maintain relatively
low computational cost and include a small set of additional hyperparameters that are
directly connected to the error series but not dependent on the main forecasting structure.
Future studies could utilize more interpretable neural network structures for error
estimation and introduce hyperparameters that could express the connection between the
main forecasting structure and the error estimation module. Furthermore, a thorough time

complexity analysis could outline the cost of combining error estimation mechanisms with
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several prominent forecasting structures in order to suggest performant and scalable
architectures that result in sufficient error stability for each forecasting horizon. In this
scope the application and impact of error estimation modules in long term energy
forecasting tasks could be worth examining since error values tend to be higher and less

consistent as the prediction horizon increases.
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