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xii Abstract

Diploma Thesis

Malware detection using metadata and entropy of PE files and machine

learning

Siavrakas Michail

Abstract

The struggle against malware is a continuous one, as those files get more sophisticated over

time in order to trick analysts and software, an evolution that seems to never stop. For the

purpose of malware detection, machine learning could provide a powerful answer. By this

perspective, a multimodal approach is proposed on this paper, trained and tested on data ob-

tained from Kaggle and the malware security partner of Meraz’18 - Annual Techno Cultural

festival of IIT Bhilai. Neural networks were developed for the two modes and then an ex-

tracted feature vector, was used as an input for different machine learning algorithms. The

best results taken were an accuracy of 96.4% and an f-1 score of 93.7%.

Keywords:
malware, detection, machine, learning, multimodal



Περίληψη xiii

Διπλωματική Εργασία

Ανίχνευση κακόβουλου λογισμικού με χρήση μεταδεδομένων και

εντροπίας φορητών εκτελέσιμων και μηχανικής μάθησης

Σιαβρακάς Μιχαήλ

Περίληψη

Η προσπάθεια καταπολέμησης του κακόβουλου λογισμικού είναι διαρκής, καθώς τέτοιου τύ-

που αρχεία γίνονται πιο εκλεπτυσμένα με την πάροδο του χρόνου ώστε να ξεγελάσουν ανα-

λυτές και λογισμικά, μια εξέλιξη που φαίνεται να μην έχει τελειωμό.Μία δυναμική απάντηση

στο θέμα της ανίχνευσης κακόβουλου λογισμικού, θα μπορούσε να δοθεί απο τή μηχανική

μάθηση. Υπό αυτό το πρίσμα, σε αυτή την εργασία παρουσιάζεται μια πολυτροπική προ-

σέγγιση, εκπαιδευμένη και δοκιμασμένη σε δεδομένα από το Kaggle και το συνεργάτη του

Meraz’18 - Annual Techno Cultural festival of IIT Bhilai. Για τις δύο εισόδους φτιάχτηκαν

νευρωνικά δίκτυα και ύστερα εξήχθη από αυτά ένα διάνυσμα, το οποίο χρησιμοποιήθηκε ως

είσοδος για διάφορους αλγορίθμους μηχανικής μάθησης. Τα καλύτερα αποτελέσματα ήταν

ακρίβεια 96.4% επί του συνόλου και f-1 απόδοση 93.7%.

Λέξεις-κλειδιά:
κακόβουλο, λογισμικό, μηχανική, μάθηση, ανίχνευση
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Chapter 1

Introduction

1.1 Context

Malware can be described as any piece of software designed to harm its host. Malware

files can be clustered in types such as worms, viruses, Trojan horses, adware, spyware and

ransomware. In recent years, a great variety of malicious files has been detected. By ana-

lyzing these files, it was determined that they were based on already known malware with

some modifications. New variants which are able to elude detection from antivirus systems,

demonstrate the continuous evolution of malicious software. One can see the extent of the

malware problem in [1].

Considering that computer systems can be found everywhere, the problem of malware

attacks is of vital importance. In addition, humanity is entering the digital era, an introduction

accelerated by real world events, leaving many individuals unprepared. For example, people

have been falling victims of different cyber scams over the years. On top of that, we saw at

the beginning of the pandemic, that businesses struggled to keep their data intact from third

parties, as they did not cope with the cyber security demands. We can see that this new era

brings forth problems with consequences that should be resolved before they become even

greater.

Since malware evolves that rapidly, current research has turned to machine learning, a

field of computer science that evolves at the same pace. The detection step is considered the

most important in the malware defence process, and machine learning algorithms have been

already used as it can be seen in [2].
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2 Chapter 1. Introduction

1.2 Motivation & Contribution

In order to protect personal and sensitive corporate data, there have been great efforts

in the field of malware detection. While traditional techniques such as static and dynamic

analysis have served us well, they have disadvantages that can be clearly exploited by the

latest versions of malware. That said, machine learning steps in, in order to provide modern

solutions.

In general, malware detection is considered a multi-modal problem, since the more infor-

mation one has, the more precise he can be on whether a particular file is malicious or not.

In this thesis, a multi-modal approach is examined. A feature vector is extracted from two

neural networks trained on the modalities of Portable Executable (PE) files and code entropy

statistics, in order to be used as input on different machine learning algorithms. The feature

vector is constructed by the method of intermediate fusion for the purpose of combining the

intermediate features generated by the models.

This thesis aspires to contribute in the examination of malware detection on multiple

modalities and the examination of different machine learning methods in ensemble learning.

1.3 Outline

In the rest of this thesis, a brief summary of the related work will be presented in chapter

2, the data preparation and the methods used will be presented in chapter 3, the data sets used

for training and testing, the performance measures and the evaluation will be presented in

chapter 4 and finally the conclusions and the future work will be presented in chapter 5.



Chapter 2

Related Work

Some complete frameworks of machine learning models with a multi-modal approach

have already been developed, with the purpose ofmalware detection/classification. The frame-

work Orthrus is proposed in [3], as a bimodal deep learning architecture with the purpose of

classification of malware. The hexadecimal representation of the malware binary, along with

the assembly instructions are fed as inputs to a Convolutional Neural Network and then two

n-gram like features are generated by a process called intermediate fusion. In intermediate

fusion wemerge features from intermediate layers of the neural networks for each mode. This

way, the manual feature generation was avoided as it was automatically done by the network,

and by combining the most dominant features we have avoided any drawbacks related with

classification on only one of the modalities.

The HYDRA framework [4] is an end to end framework for malware detection. By feed-

ing the list of the API function calls, the assembly instructions and the hexadecimal repre-

sentation of the malware binary to a feed forward network, a convolutional and a DeepConv

network respectively, the three outputs combined give us a feature vector. This feature vector

will then be used to classify an executable to its appropriate class.

A similar approach was followed by the Chimera framework [5] but for Android malware

detection. In this work, syscall sequences, dex images, intents & permission were fed to

two convolutional networks and a feed-forward network respectively, and then the extracted

feature vectors were merged to form a bigger one, which would act as an input to another

feed-forward neural network.

In [6] we see another intermediate fusion solution for malware classification, with PE

metadata along with PE import data as inputs to a feed-forward neural network and opcodes

3



4 Chapter 2. Related Work

as input to a convolutional neural network. Then the outputs of the two are combined to form

a feature vector.

[7] propose the most effective feature combination from different modalities, to create a

feature vector that will help the classifier of their choice. The accuracy given by this method

points out the importance of the feature vector given to the classifier.

[8] approached the problems ofmalware detection and classificationwith a hybridmethod.

They tried to create a feature vector with characteristics obtained from both static and dy-

namic API call sequences. The implementation was done based on the contribution of each

feature on an attempt to increase variance between the samples. The results of the hybrid

approach showed an improvement of over 1.5% for the detection problem and a tremendous

improvement on the classification problem as opposed to a static or a dynamic approach.

[9] state that obfuscatedmalware detection rate can increase with amulti-modal approach.

Thus, they created MalInsight an early fusion machine learning model which takes as an

input a feature vector composed of PE sections, API and DLL calls and the file’s networks

behaviour.

[10] show that a model that the multi-modal approach state the problem of robustness, by

comparing the classification results between old and new malware. They also state that the

difference observed between the new and old malware data sets becomes less significant if

the two are mixed together. Their hybrid method outcompetes the results obtained from each

mode separately.

[11] is occupied with the classification of malware in different families by using the

modality of PE metadata, making an extended report to this type of data.

[12] used an early fusion method. They tried to transfer the problem from the research

area to the field, in order to see how well the model performs on real time and compare it

with academic results.

The results of the above-mentioned papers make it difficult to understand if early, inter-

mediate, or late fusion is better suited for the malware classification or detection problem,

though in this thesis an intermediate fusion approach is followed since it allowed more flex-

ibility.



Chapter 3

Models & Approach

3.1 Data Preprocessing

The data set used was found in a Kaggle competition. It contains PE metadata,entropy

measures from different sections of Windows PE files, and the hexadecimal representation

of the malware binary, stored in tabular form. The Kaggle-data.csv, containing 216353 file

samples was split in a training and test set. The training set was comprised of 78309 tuples

while the rest were used as the test set. The test set was bigger than the training set in order

to see how well the model generalizes and it contains 96724 malware and 41333 benign

-previously unseen- samples

The PE metadata are extracted from the header of PE files. These files give instructions

to the operating system on how to execute the file.

The entropy statistics are extracted by statistically analyzing each file and each code sec-

tion of the file. Obfuscation techniques, such as packing, are used by malware authors in

order to trick the static analysis of the file’s features. By doing that though, they increase the

entropy of the file, or that of a particular code section.

The PE metadata and the entropy statistics parts will be used, so we split the dataset in

two, accordingly. After that, the features that should be used from the overall of eachmodality

had to be chosen, so 6 of the entropy statistics were dropped. Now, the two modalities are

ready to be scaled.

The PE metadata part was standardized first. Then, the mean was subtracted from each

feature, and after extracting the U matrix from the Singular Value Decomposition (SVD)

factorization, the final form of the data set was formed by the product of the U matrix and

5



6 Chapter 3. Models & Approach

the data we had up to this point. The entropy part was simply standardized and then the mean

was subtracted from each feature. This concludes the data pre-processing procedure.

3.2 Class Imbalance

A common problemwith data sets for machine learning algorithms is the class imbalance.

Specifically in problems regarding malware detection, legal restrictions protect legitimate

files from being used in public researches of this purpose. On the other hand, malware files

are widespread by sites of interest, as mentioned in [2] and [4].

This problem is encountered on this data set too, and since multiple algorithms were

used in order to determine if the sample is malicious or not, the class_weight parameter was

adjusted for some of them in order to deal with the problem.

3.3 Modalities & MLPs

Each modality is provided as an input to a Multi Layer Perceptron neural network. The

architecture of the PE metadata neural network is the following:

• Dense layer of 32 units and a tanh activation function,

• Dropout layer of 0.3 probability,

• Dense layer of 64 units and a tanh activation function,

• Dropout layer of 0.3 probability,

• Dense layer of 64 units and a tanh activation function,

• Dropout layer of 0.3 probability,

• Dense layer of 32 units and a tanh activation function,

• Dropout layer of 0.3 probability,

• Dense layer of 1 unit with a sigmoid activation function.

The optimizer picked was the Stochastic Gradient Descent and its parameters were a

learning rate of 0.01 and decay of 1e-6. The loss function which was selected was the binary
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cross-entropy, as we had to do with a binary classification problem. The model was trained

for 50 epochs with a batch size equal to 32.

The architecture for the entropy statistics neural network is the following:

• Dense layer of 25 units and a relu activation function,

• Dropout layer of 0.3 probability,

• Dense layer of 50 units and a relu activation function,

• Dropout layer of 0.3 probability,

• Dense layer of 100 units and a relu activation function,

• Dropout layer of 0.3 probability,

• Dense layer of 200 units and a relu activation function,

• Dropout layer of 0.3 probability,

• Dense layer of 100 units and a relu activation function,

• Dropout layer of 0.3 probability,

• Dense layer of 50 units and a relu activation function,

• Dropout layer of 0.3 probability,

• Dense layer of 1 unit with a sigmoid activation function.

The optimizer picked was the Adam optimizer and its parameters were a learning rate of

0.001 and decay of 1e-6. The loss function which was selected was the mean absolute error.

The model was trained for 50 epochs with a batch size equal to 40.

3.4 Intermediate Fusion

For the intermediate fusion part the pre-trained neural sub-networks were taken, and the

outputs of their hidden layers were concatenated in such way that the variation introduced

from the calculations of the feed forward networks could be epxloited. The combinationswere

checked exhaustively and the best results were given by that combination of these outputs:
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• The output of the second hidden layer of the PE metadata side,

• The output of the last hidden layer of the entropy side,

• The output of the feed-forward network of the entropy side.

Note that for the Convolutional Neural Network (CNN), a dense layer of 256 units was

used in order to enlarge that feature vector.

3.5 Model Ensembling

The feature vector generated will be the input of different machine learning algorithms

that will be used for the model ensembling, where a model takes as input the proposed feature

vector generated by the two sub-models.

In general, ensembling methods could correct the mistakes of the trained sub-networks

and the results are predictions that are less sensitive to the specifics of the training data and

choice of training scheme.

For the first ensembling kind we use the 10 different methods presented below:

1. CNN with architecture of:

• Conv2D layer of 100 with kernel size equal to (3, 3), a gray-scale image input of

size 64x4 with a relu activation function,

• MaxPooling2D layer with pool size equal to (2, 2),

• Dense layer of 16 units with a relu activation function,

• Dropout layer of 0.5 probability,

• Dense layer of 1 unit with a sigmoid function.

The optimizer picked was the Stochastic Gradient Descent and its parameters were a

learning rate of 0.01, a decay of 1e-6. The loss function which was selected was the

mean absolute error. The model was trained for 30 epochs with a batch size equal to

32. The class_weight parameter was {0: 1., 1: 3.}.

2. Multi Layer Perceptron (MLP) with architecture of:

• Dense layer of 115 units with a tanh activation function,
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• Dense layer of 100 units with a tanh activation function,

• Dense layer of 150 units with a tanh activation function,

• Batch Normalization layer,

• Dense layer of 75 units with a tanh activation function,

• Dropout layer of 0.2 probability,

• Dense layer of 1 unit with a tanh function.

The optimizer picked was the Stochastic Gradient Descent and its parameters were a

learning rate of 0.01 and decay of 1e-6. The loss function which was selected was the

mean absolute error. The model was trained for 20 epochs with a batch size equal to

70. The class_weight parameter was {0: 8., 1: 6.}.

3. The CSupport Vector Machine (SVM) with the C parameter equal to 0.1,

4. The K-Nearest Neighbours (KNN) with the number of neighbours to be considered

equal to 70.

5. The Random Forest Classifier (RFC) with 100 estimators and max_depth=10,

6. The Decision Tree Classifier (DTC) with max_depth=100 and min_samples_split=2,

7. The L1-regularized Logistic Regression (LR) with 500 iterations, the liblinear as a

solver, warm start and the class_weight parameter set as {0: 2., 1: 1.},

8. The Gradient Boosting Classifier (GBC) with 100 estimators, a learning rate of 0.1 and

max_depth=2,

9. The Extended Gradient Boosting Classifier (XGBC)with 50 estimators, max_depth=1,

objective=logitraw,

10. The Extra Trees Classifier (ETC)with 100 estimators, max_depth=10,min_samples_split=3.





Chapter 4

Performance Evaluation

The evaluation of all the methods happened on the metrics of accuracy and f1. Τhe f1

metric was chosen since it is a combination of the precision and recall measurements and

gives more information regarding the performance of the occasional method on the true/false

positive. In addition the False Positives (FP) and False Negatives (FN) will be presented in

order to help us understand how well the model behaves.

The results for the multimodal method and for the two sub-models on the same algorithms

except the CNN -with the parameters changed accordingly- are presented below:

Method Accuracy(%) F1(%) FΝ FP

CNN 95.9 92.8 914 4702

MLP 95.8 92.8 2059 3796

SVM 95.8 92.7 1820 4032

KNN 95.5 92.2 1948 4279

RFC 95.9 92.8 963 4739

DTC 73.6 56.8 19026 17401

LR 90.8 83.1 2661 10087

GBC 95.6 92.3 916 5132

XGBC 94.7 90.4 713 6617

ETC 95.5 92.1 983 5235

Table 4.1: Multimodal method performance

11



12 Chapter 4. Performance Evaluation

Figure 4.1: Multimodal method performance graph

Method Accuracy(%) F1(%) FN FP

MLP 84.4 70.2 5624 15937

SVM 73.4 63.5 27212 9471

KNN 80.9 70.7 16776 9589

RFC 85.2 68.0 790 19606

DTC 71.9 54.5 20633 18110

LR 63.7 49.7 33677 16499

GBC 84.1 68.3 4183 17700

XGBC 79.2 66.6 16039 12709

ETC 74.6 47.1 9355 25715

Table 4.2: Entropy side performance
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Figure 4.2: Entropy side performance graph

Method Accuracy(%) F1(%) FN FP

MLP 93.8 88.6 497 8087

SVM 96.4 93.7 1065 3930

KNN 95.5 91.9 687 5575

RFC 92.5 86.3 1750 8615

DTC 79.7 61.1 8734 19327

LR 63.7 49.7 33677 16499

GBC 94.0 89.9 3268 4948

XGBC 91.4 83.7 1112 10804

ETC 88.1 75.5 441 15997

Table 4.3: Metadata side performance
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Figure 4.3: Metadata side performance graph

By comparing the results of this thesis with these of the Related Work 2, the impression

that convolutional neural networks are stronger for malware detection/classification tasks is

given. They provide more flexibility on the feature generation part, but they are computa-

tionaly expensive. In general, we can see an improvement to both metrics, correction to the

sub-model biases and a stability in the results despite the chosen classifier. The neural net-

works seem to provide better solutions than the other classifiers. The best result was taken

drom the PE metadata side and the results taken from the entropy side were poor, so it is

assumed that the entropy statistics are a difficult feature to handle.



Chapter 5

Conclusion & Future Work

To conclude, this thesis had the purpose of malware detection of Windows PE files based

on two modalities, that of the PE metadata and that of the entropy statistics. Two MLPs were

developed for each one and after their training, the best suited for the purpose layer outputs

were merged to provide a feature vector. This feature vector was fed to different machine

learning algorithms. The two modalities were tested on almost all of the methods too. The

best results were given from the first one with an accuracy of 96.4% and an f-1 measure of

93.7%, while the proposed method gave an accuracy of 95.9% and an f-1 measure of 92.8%.

We can see that the two modalities separately are not very good in correctly classifying the

benign samples, something that is being corrected by the multi-modal approach followed.

In addition high percentages on both metrics are achieved despite the classifier, something

perceived as a result of the feature vector that was created. In general, the method seems to

correct the biases of the sub-models and achieving results close to the best for the majority

of the classifiers.

For future work, more modalities will be added,since the hexadecimal representation of

the malware can be visualized as a picture and can be used as input to a CNN, with per-

formance improvement being the goal. Research on adversarial examples and how to trick

machine learning algorithms for malware detection/classification will be done, as new or

obfuscated malware appear. Unpacked malware should be examined since unpacking is a

heavy procedure and packers are designed from malware authors to trick the models. Models

should be retrained to check their robustness since malware authors can adapt to their abili-

ties. Different methods for feature generation or extraction will be examined, possibly with

self-organizing maps since it can help machine learning models perform better.
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